This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ordinal B is equinumerous to the leading term of its Cantor normal form. Here we show that bijection explicitly. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | ||
| cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | ||
| cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | ||
| cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | ||
| cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | ||
| cnfcom.1 | ⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) | ||
| Assertion | cnfcom | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom.s | ⊢ 𝑆 = dom ( ω CNF 𝐴 ) | |
| 2 | cnfcom.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cnfcom.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) | |
| 4 | cnfcom.f | ⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) | |
| 5 | cnfcom.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 6 | cnfcom.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) | |
| 7 | cnfcom.t | ⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) | |
| 8 | cnfcom.m | ⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 9 | cnfcom.k | ⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) | |
| 10 | cnfcom.1 | ⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) | |
| 11 | omelon | ⊢ ω ∈ On | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ω ∈ On ) |
| 13 | 1 12 2 | cantnff1o | ⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 14 | f1ocnv | ⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) | |
| 15 | f1of | ⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 17 | 16 3 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 18 | 4 17 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 19 | 1 12 2 5 18 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 20 | 19 | simprd | ⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 21 | elnn | ⊢ ( ( 𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω ) → 𝐼 ∈ ω ) | |
| 22 | 10 20 21 | syl2anc | ⊢ ( 𝜑 → 𝐼 ∈ ω ) |
| 23 | eleq1 | ⊢ ( 𝑤 = 𝐼 → ( 𝑤 ∈ dom 𝐺 ↔ 𝐼 ∈ dom 𝐺 ) ) | |
| 24 | suceq | ⊢ ( 𝑤 = 𝐼 → suc 𝑤 = suc 𝐼 ) | |
| 25 | 24 | fveq2d | ⊢ ( 𝑤 = 𝐼 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝐼 ) ) |
| 26 | 24 | fveq2d | ⊢ ( 𝑤 = 𝐼 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝐼 ) ) |
| 27 | fveq2 | ⊢ ( 𝑤 = 𝐼 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝐼 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑤 = 𝐼 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
| 29 | 2fveq3 | ⊢ ( 𝑤 = 𝐼 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) | |
| 30 | 28 29 | oveq12d | ⊢ ( 𝑤 = 𝐼 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| 31 | 25 26 30 | f1oeq123d | ⊢ ( 𝑤 = 𝐼 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 32 | 23 31 | imbi12d | ⊢ ( 𝑤 = 𝐼 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑤 = 𝐼 → ( ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ↔ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) ) |
| 34 | eleq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) | |
| 35 | suceq | ⊢ ( 𝑤 = ∅ → suc 𝑤 = suc ∅ ) | |
| 36 | 35 | fveq2d | ⊢ ( 𝑤 = ∅ → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc ∅ ) ) |
| 37 | 35 | fveq2d | ⊢ ( 𝑤 = ∅ → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 38 | fveq2 | ⊢ ( 𝑤 = ∅ → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ∅ ) ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑤 = ∅ → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 40 | 2fveq3 | ⊢ ( 𝑤 = ∅ → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) | |
| 41 | 39 40 | oveq12d | ⊢ ( 𝑤 = ∅ → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 42 | 36 37 41 | f1oeq123d | ⊢ ( 𝑤 = ∅ → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 43 | 34 42 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) ) |
| 44 | eleq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) | |
| 45 | suceq | ⊢ ( 𝑤 = 𝑦 → suc 𝑤 = suc 𝑦 ) | |
| 46 | 45 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝑦 ) ) |
| 47 | 45 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
| 48 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 49 | 48 | oveq2d | ⊢ ( 𝑤 = 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
| 50 | 2fveq3 | ⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 51 | 49 50 | oveq12d | ⊢ ( 𝑤 = 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 52 | 46 47 51 | f1oeq123d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 53 | 44 52 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) ) |
| 54 | eleq1 | ⊢ ( 𝑤 = suc 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) | |
| 55 | suceq | ⊢ ( 𝑤 = suc 𝑦 → suc 𝑤 = suc suc 𝑦 ) | |
| 56 | 55 | fveq2d | ⊢ ( 𝑤 = suc 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc suc 𝑦 ) ) |
| 57 | 55 | fveq2d | ⊢ ( 𝑤 = suc 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
| 58 | fveq2 | ⊢ ( 𝑤 = suc 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ suc 𝑦 ) ) | |
| 59 | 58 | oveq2d | ⊢ ( 𝑤 = suc 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 60 | 2fveq3 | ⊢ ( 𝑤 = suc 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 61 | 59 60 | oveq12d | ⊢ ( 𝑤 = suc 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 62 | 56 57 61 | f1oeq123d | ⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 63 | 54 62 | imbi12d | ⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 64 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
| 65 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
| 66 | simpr | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ dom 𝐺 ) | |
| 67 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ω ∈ On ) |
| 68 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 69 | 1 12 2 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 70 | 18 69 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 71 | 70 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 72 | 68 71 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 73 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 74 | 2 73 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ On ) |
| 75 | 72 74 | sstrd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 76 | 5 | oif | ⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 77 | 76 | ffvelcdmi | ⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
| 78 | ssel2 | ⊢ ( ( ( 𝐹 supp ∅ ) ⊆ On ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) | |
| 79 | 75 77 78 | syl2an | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 80 | peano1 | ⊢ ∅ ∈ ω | |
| 81 | 80 | a1i | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ω ) |
| 82 | oen0 | ⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) | |
| 83 | 67 79 81 82 | syl21anc | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 84 | 0ex | ⊢ ∅ ∈ V | |
| 85 | 7 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝑇 ‘ ∅ ) = ∅ ) |
| 86 | 84 85 | ax-mp | ⊢ ( 𝑇 ‘ ∅ ) = ∅ |
| 87 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 88 | 6 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 89 | f1oeq2 | ⊢ ( ( 𝐻 ‘ ∅ ) = ∅ → ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) | |
| 90 | 84 88 89 | mp2b | ⊢ ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
| 91 | 87 90 | mpbir | ⊢ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ |
| 92 | f1oeq1 | ⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) ) | |
| 93 | 91 92 | mpbiri | ⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
| 94 | 86 93 | mp1i | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
| 95 | 1 64 65 4 5 6 7 8 9 66 83 94 | cnfcomlem | ⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 96 | 95 | ex | ⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 97 | 5 | oicl | ⊢ Ord dom 𝐺 |
| 98 | ordtr | ⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) | |
| 99 | 97 98 | ax-mp | ⊢ Tr dom 𝐺 |
| 100 | trsuc | ⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) | |
| 101 | 99 100 | mpan | ⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
| 102 | 101 | imim1i | ⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 103 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ∈ On ) |
| 104 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
| 105 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) | |
| 106 | 74 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ⊆ On ) |
| 107 | 72 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 108 | 76 | ffvelcdmi | ⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 109 | 108 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 110 | 107 109 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐴 ) |
| 111 | 106 110 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
| 112 | eloni | ⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) | |
| 113 | 111 112 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 114 | vex | ⊢ 𝑦 ∈ V | |
| 115 | 114 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 116 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 117 | 19 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 118 | 5 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 119 | 116 117 118 | syl2anc | ⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 121 | 101 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
| 122 | isorel | ⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 123 | 120 121 105 122 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 124 | 114 | sucex | ⊢ suc 𝑦 ∈ V |
| 125 | 124 | epeli | ⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
| 126 | fvex | ⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V | |
| 127 | 126 | epeli | ⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 128 | 123 125 127 | 3bitr3g | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 ∈ suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 129 | 115 128 | mpbii | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 130 | ordsucss | ⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) | |
| 131 | 113 129 130 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
| 132 | 76 | ffvelcdmi | ⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 133 | 121 132 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 134 | 107 133 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
| 135 | 106 134 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 136 | onsuc | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) | |
| 137 | 135 136 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 138 | 11 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ω ∈ On ) |
| 139 | 80 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ω ) |
| 140 | oewordi | ⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) | |
| 141 | 137 111 138 139 140 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 142 | 131 141 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 143 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐹 : 𝐴 ⟶ ω ) |
| 144 | 143 134 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ) |
| 145 | nnon | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) | |
| 146 | 144 145 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 147 | oecl | ⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) | |
| 148 | 138 135 147 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 149 | oen0 | ⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) | |
| 150 | 138 135 139 149 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
| 151 | omord2 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ∧ ω ∈ On ∧ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) ∧ ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) | |
| 152 | 146 138 148 150 151 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) |
| 153 | 144 152 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
| 154 | oesuc | ⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) | |
| 155 | 138 135 154 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
| 156 | 153 155 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
| 157 | 142 156 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 158 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 159 | 1 103 104 4 5 6 7 8 9 105 157 158 | cnfcomlem | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 160 | 159 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 161 | 160 | a2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 162 | 102 161 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 163 | 162 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) ) |
| 164 | 43 53 63 96 163 | finds2 | ⊢ ( 𝑤 ∈ ω → ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ) |
| 165 | 33 164 | vtoclga | ⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 166 | 22 165 | mpcom | ⊢ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 167 | 10 166 | mpd | ⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |