This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman'sBeginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmpsub.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpsub.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ ( 𝐽 ↾t 𝑆 ) | |
| 3 | 2 | iscmp | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 4 | id | ⊢ ( 𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋 ) | |
| 5 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 6 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑆 ∈ V ) | |
| 7 | 4 5 6 | syl2anr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 8 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) | |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
| 10 | ibar | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ Top → ( ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ↔ ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) ) | |
| 11 | 10 | bicomd | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ Top → ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( 𝐽 ↾t 𝑆 ) ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 13 | 3 12 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 14 | vex | ⊢ 𝑡 ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝑦 ∩ 𝑆 ) ↔ 𝑡 = ( 𝑦 ∩ 𝑆 ) ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) ↔ ∃ 𝑦 ∈ 𝑐 𝑡 = ( 𝑦 ∩ 𝑆 ) ) ) |
| 17 | 14 16 | elab | ⊢ ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ ∃ 𝑦 ∈ 𝑐 𝑡 = ( 𝑦 ∩ 𝑆 ) ) |
| 18 | velpw | ⊢ ( 𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽 ) | |
| 19 | ssel2 | ⊢ ( ( 𝑐 ⊆ 𝐽 ∧ 𝑦 ∈ 𝑐 ) → 𝑦 ∈ 𝐽 ) | |
| 20 | ineq1 | ⊢ ( 𝑑 = 𝑦 → ( 𝑑 ∩ 𝑆 ) = ( 𝑦 ∩ 𝑆 ) ) | |
| 21 | 20 | rspceeqv | ⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑡 = ( 𝑦 ∩ 𝑆 ) ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) |
| 22 | 21 | ex | ⊢ ( 𝑦 ∈ 𝐽 → ( 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) |
| 23 | 19 22 | syl | ⊢ ( ( 𝑐 ⊆ 𝐽 ∧ 𝑦 ∈ 𝑐 ) → ( 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) |
| 24 | 23 | ex | ⊢ ( 𝑐 ⊆ 𝐽 → ( 𝑦 ∈ 𝑐 → ( 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) ) |
| 25 | 18 24 | sylbi | ⊢ ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑦 ∈ 𝑐 → ( 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( 𝑦 ∈ 𝑐 → ( 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) ) |
| 27 | 26 | rexlimdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( ∃ 𝑦 ∈ 𝑐 𝑡 = ( 𝑦 ∩ 𝑆 ) → ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) |
| 28 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → 𝐽 ∈ Top ) | |
| 29 | 1 | sseq2i | ⊢ ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽 ) |
| 30 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 31 | ssexg | ⊢ ( ( 𝑆 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ∈ V ) → 𝑆 ∈ V ) | |
| 32 | 30 31 | sylan2 | ⊢ ( ( 𝑆 ⊆ ∪ 𝐽 ∧ 𝐽 ∈ Top ) → 𝑆 ∈ V ) |
| 33 | 32 | ancoms | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ∈ V ) |
| 34 | 29 33 | sylan2b | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → 𝑆 ∈ V ) |
| 36 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝑡 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) | |
| 37 | 28 35 36 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( 𝑡 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑑 ∈ 𝐽 𝑡 = ( 𝑑 ∩ 𝑆 ) ) ) |
| 38 | 27 37 | sylibrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( ∃ 𝑦 ∈ 𝑐 𝑡 = ( 𝑦 ∩ 𝑆 ) → 𝑡 ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
| 39 | 17 38 | biimtrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → 𝑡 ∈ ( 𝐽 ↾t 𝑆 ) ) ) |
| 40 | 39 | ssrdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ⊆ ( 𝐽 ↾t 𝑆 ) ) |
| 41 | vex | ⊢ 𝑐 ∈ V | |
| 42 | 41 | abrexex | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∈ V |
| 43 | 42 | elpw | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ↔ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ⊆ ( 𝐽 ↾t 𝑆 ) ) |
| 44 | 40 43 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) |
| 45 | unieq | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∪ 𝑠 = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) | |
| 46 | 45 | eqeq2d | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 ↔ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) ) |
| 47 | pweq | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → 𝒫 𝑠 = 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) | |
| 48 | 47 | ineq1d | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ) |
| 49 | 48 | rexeqdv | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ( ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ↔ ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 50 | 46 49 | imbi12d | ⊢ ( 𝑠 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ( ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ↔ ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 51 | 50 | rspcva | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 52 | 44 51 | sylan | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 53 | 52 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 54 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 56 | vex | ⊢ 𝑦 ∈ V | |
| 57 | 56 | inex1 | ⊢ ( 𝑦 ∩ 𝑆 ) ∈ V |
| 58 | 57 | dfiun2 | ⊢ ∪ 𝑦 ∈ 𝑐 ( 𝑦 ∩ 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } |
| 59 | incom | ⊢ ( 𝑦 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑦 ) | |
| 60 | 59 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ 𝑦 ∈ 𝑐 ) → ( 𝑦 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑦 ) ) |
| 61 | 60 | iuneq2dv | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ∪ 𝑦 ∈ 𝑐 ( 𝑦 ∩ 𝑆 ) = ∪ 𝑦 ∈ 𝑐 ( 𝑆 ∩ 𝑦 ) ) |
| 62 | 58 61 | eqtr3id | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } = ∪ 𝑦 ∈ 𝑐 ( 𝑆 ∩ 𝑦 ) ) |
| 63 | iunin2 | ⊢ ∪ 𝑦 ∈ 𝑐 ( 𝑆 ∩ 𝑦 ) = ( 𝑆 ∩ ∪ 𝑦 ∈ 𝑐 𝑦 ) | |
| 64 | uniiun | ⊢ ∪ 𝑐 = ∪ 𝑦 ∈ 𝑐 𝑦 | |
| 65 | 64 | eqcomi | ⊢ ∪ 𝑦 ∈ 𝑐 𝑦 = ∪ 𝑐 |
| 66 | 65 | a1i | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ∪ 𝑦 ∈ 𝑐 𝑦 = ∪ 𝑐 ) |
| 67 | 66 | ineq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( 𝑆 ∩ ∪ 𝑦 ∈ 𝑐 𝑦 ) = ( 𝑆 ∩ ∪ 𝑐 ) ) |
| 68 | incom | ⊢ ( 𝑆 ∩ ∪ 𝑐 ) = ( ∪ 𝑐 ∩ 𝑆 ) | |
| 69 | sseqin2 | ⊢ ( 𝑆 ⊆ ∪ 𝑐 ↔ ( ∪ 𝑐 ∩ 𝑆 ) = 𝑆 ) | |
| 70 | 69 | biimpi | ⊢ ( 𝑆 ⊆ ∪ 𝑐 → ( ∪ 𝑐 ∩ 𝑆 ) = 𝑆 ) |
| 71 | 68 70 | eqtrid | ⊢ ( 𝑆 ⊆ ∪ 𝑐 → ( 𝑆 ∩ ∪ 𝑐 ) = 𝑆 ) |
| 72 | 71 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( 𝑆 ∩ ∪ 𝑐 ) = 𝑆 ) |
| 73 | 67 72 | eqtrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( 𝑆 ∩ ∪ 𝑦 ∈ 𝑐 𝑦 ) = 𝑆 ) |
| 74 | 63 73 | eqtrid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ∪ 𝑦 ∈ 𝑐 ( 𝑆 ∩ 𝑦 ) = 𝑆 ) |
| 75 | 62 74 | eqtr2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → 𝑆 = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) |
| 76 | 55 75 | eqeq12d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( 𝑆 = 𝑆 ↔ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) ) |
| 77 | 55 | eqeq1d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( 𝑆 = ∪ 𝑡 ↔ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 78 | 77 | rexbidv | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 ↔ ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 79 | 76 78 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( ( 𝑆 = 𝑆 → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 ) ↔ ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 80 | eqid | ⊢ 𝑆 = 𝑆 | |
| 81 | 80 | a1bi | ⊢ ( ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 ↔ ( 𝑆 = 𝑆 → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 ) ) |
| 82 | elin | ⊢ ( 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ↔ ( 𝑡 ∈ 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∧ 𝑡 ∈ Fin ) ) | |
| 83 | velpw | ⊢ ( 𝑡 ∈ 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ 𝑡 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) | |
| 84 | dfss3 | ⊢ ( 𝑡 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ ∀ 𝑠 ∈ 𝑡 𝑠 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ) | |
| 85 | vex | ⊢ 𝑠 ∈ V | |
| 86 | eqeq1 | ⊢ ( 𝑥 = 𝑠 → ( 𝑥 = ( 𝑦 ∩ 𝑆 ) ↔ 𝑠 = ( 𝑦 ∩ 𝑆 ) ) ) | |
| 87 | 86 | rexbidv | ⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) ↔ ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ) ) |
| 88 | 85 87 | elab | ⊢ ( 𝑠 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ) |
| 89 | 88 | ralbii | ⊢ ( ∀ 𝑠 ∈ 𝑡 𝑠 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ) |
| 90 | 83 84 89 | 3bitri | ⊢ ( 𝑡 ∈ 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ↔ ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ) |
| 91 | 90 | anbi1i | ⊢ ( ( 𝑡 ∈ 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∧ 𝑡 ∈ Fin ) ↔ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) |
| 92 | 82 91 | bitri | ⊢ ( 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ↔ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) |
| 93 | ineq1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑠 ) → ( 𝑦 ∩ 𝑆 ) = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) | |
| 94 | 93 | eqeq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑠 ) → ( 𝑠 = ( 𝑦 ∩ 𝑆 ) ↔ 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) |
| 95 | 94 | ac6sfi | ⊢ ( ( 𝑡 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) |
| 96 | 95 | ancoms | ⊢ ( ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) |
| 98 | frn | ⊢ ( 𝑓 : 𝑡 ⟶ 𝑐 → ran 𝑓 ⊆ 𝑐 ) | |
| 99 | 98 | ad2antrl | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ran 𝑓 ⊆ 𝑐 ) |
| 100 | vex | ⊢ 𝑓 ∈ V | |
| 101 | 100 | rnex | ⊢ ran 𝑓 ∈ V |
| 102 | 101 | elpw | ⊢ ( ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓 ⊆ 𝑐 ) |
| 103 | 99 102 | sylibr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ran 𝑓 ∈ 𝒫 𝑐 ) |
| 104 | simprr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → 𝑡 ∈ Fin ) | |
| 105 | 104 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → 𝑡 ∈ Fin ) |
| 106 | ffn | ⊢ ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑓 Fn 𝑡 ) | |
| 107 | dffn4 | ⊢ ( 𝑓 Fn 𝑡 ↔ 𝑓 : 𝑡 –onto→ ran 𝑓 ) | |
| 108 | 106 107 | sylib | ⊢ ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
| 109 | fodomfi | ⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 –onto→ ran 𝑓 ) → ran 𝑓 ≼ 𝑡 ) | |
| 110 | 108 109 | sylan2 | ⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 ⟶ 𝑐 ) → ran 𝑓 ≼ 𝑡 ) |
| 111 | 110 | adantll | ⊢ ( ( ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ∧ 𝑓 : 𝑡 ⟶ 𝑐 ) → ran 𝑓 ≼ 𝑡 ) |
| 112 | 111 | adantll | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑓 : 𝑡 ⟶ 𝑐 ) → ran 𝑓 ≼ 𝑡 ) |
| 113 | 112 | ad2ant2r | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ran 𝑓 ≼ 𝑡 ) |
| 114 | domfi | ⊢ ( ( 𝑡 ∈ Fin ∧ ran 𝑓 ≼ 𝑡 ) → ran 𝑓 ∈ Fin ) | |
| 115 | 105 113 114 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ran 𝑓 ∈ Fin ) |
| 116 | 103 115 | elind | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 117 | id | ⊢ ( 𝑠 = 𝑢 → 𝑠 = 𝑢 ) | |
| 118 | fveq2 | ⊢ ( 𝑠 = 𝑢 → ( 𝑓 ‘ 𝑠 ) = ( 𝑓 ‘ 𝑢 ) ) | |
| 119 | 118 | ineq1d | ⊢ ( 𝑠 = 𝑢 → ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) |
| 120 | 117 119 | eqeq12d | ⊢ ( 𝑠 = 𝑢 → ( 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ↔ 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) ) |
| 121 | 120 | rspccv | ⊢ ( ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) → ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) ) |
| 122 | pm2.27 | ⊢ ( 𝑢 ∈ 𝑡 → ( ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) ) | |
| 123 | inss1 | ⊢ ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ⊆ ( 𝑓 ‘ 𝑢 ) | |
| 124 | sseq1 | ⊢ ( 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) → ( 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ↔ ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ⊆ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 125 | 123 124 | mpbiri | ⊢ ( 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) → 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) ) |
| 126 | ssel | ⊢ ( 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) → ( 𝑤 ∈ 𝑢 → 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 127 | 126 | a1dd | ⊢ ( 𝑢 ⊆ ( 𝑓 ‘ 𝑢 ) → ( 𝑤 ∈ 𝑢 → ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 128 | 125 127 | syl | ⊢ ( 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) → ( 𝑤 ∈ 𝑢 → ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) |
| 129 | 128 | a1i | ⊢ ( 𝑢 ∈ 𝑡 → ( 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) → ( 𝑤 ∈ 𝑢 → ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) ) ) |
| 130 | 129 | 3imp | ⊢ ( ( 𝑢 ∈ 𝑡 ∧ 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ∧ 𝑤 ∈ 𝑢 ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) |
| 131 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑡 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) | |
| 132 | 131 | expcom | ⊢ ( 𝑢 ∈ 𝑡 → ( 𝑓 Fn 𝑡 → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) |
| 133 | 132 | 3ad2ant1 | ⊢ ( ( 𝑢 ∈ 𝑡 ∧ 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ∧ 𝑤 ∈ 𝑢 ) → ( 𝑓 Fn 𝑡 → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) |
| 134 | 106 133 | syl5 | ⊢ ( ( 𝑢 ∈ 𝑡 ∧ 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ∧ 𝑤 ∈ 𝑢 ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) |
| 135 | 130 134 | jcad | ⊢ ( ( 𝑢 ∈ 𝑡 ∧ 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ∧ 𝑤 ∈ 𝑢 ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) |
| 136 | 135 | 3exp | ⊢ ( 𝑢 ∈ 𝑡 → ( 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) → ( 𝑤 ∈ 𝑢 → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) ) ) |
| 137 | 122 136 | syld | ⊢ ( 𝑢 ∈ 𝑡 → ( ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) → ( 𝑤 ∈ 𝑢 → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) ) ) |
| 138 | 137 | com3r | ⊢ ( 𝑤 ∈ 𝑢 → ( 𝑢 ∈ 𝑡 → ( ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) ) ) |
| 139 | 138 | imp | ⊢ ( ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ( ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) ) |
| 140 | 139 | com3l | ⊢ ( ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) → ( 𝑓 : 𝑡 ⟶ 𝑐 → ( ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) ) |
| 141 | 140 | impcom | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ( 𝑢 ∈ 𝑡 → 𝑢 = ( ( 𝑓 ‘ 𝑢 ) ∩ 𝑆 ) ) ) → ( ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) |
| 142 | 121 141 | sylan2 | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) |
| 143 | fvex | ⊢ ( 𝑓 ‘ 𝑢 ) ∈ V | |
| 144 | eleq2 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ) ) | |
| 145 | eleq1 | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( 𝑣 ∈ ran 𝑓 ↔ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) | |
| 146 | 144 145 | anbi12d | ⊢ ( 𝑣 = ( 𝑓 ‘ 𝑢 ) → ( ( 𝑤 ∈ 𝑣 ∧ 𝑣 ∈ ran 𝑓 ) ↔ ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) ) ) |
| 147 | 143 146 | spcev | ⊢ ( ( 𝑤 ∈ ( 𝑓 ‘ 𝑢 ) ∧ ( 𝑓 ‘ 𝑢 ) ∈ ran 𝑓 ) → ∃ 𝑣 ( 𝑤 ∈ 𝑣 ∧ 𝑣 ∈ ran 𝑓 ) ) |
| 148 | 142 147 | syl6 | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ∃ 𝑣 ( 𝑤 ∈ 𝑣 ∧ 𝑣 ∈ ran 𝑓 ) ) ) |
| 149 | 148 | exlimdv | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( ∃ 𝑢 ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) → ∃ 𝑣 ( 𝑤 ∈ 𝑣 ∧ 𝑣 ∈ ran 𝑓 ) ) ) |
| 150 | eluni | ⊢ ( 𝑤 ∈ ∪ 𝑡 ↔ ∃ 𝑢 ( 𝑤 ∈ 𝑢 ∧ 𝑢 ∈ 𝑡 ) ) | |
| 151 | eluni | ⊢ ( 𝑤 ∈ ∪ ran 𝑓 ↔ ∃ 𝑣 ( 𝑤 ∈ 𝑣 ∧ 𝑣 ∈ ran 𝑓 ) ) | |
| 152 | 149 150 151 | 3imtr4g | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( 𝑤 ∈ ∪ 𝑡 → 𝑤 ∈ ∪ ran 𝑓 ) ) |
| 153 | 152 | ssrdv | ⊢ ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ∪ 𝑡 ⊆ ∪ ran 𝑓 ) |
| 154 | 153 | adantl | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ∪ 𝑡 ⊆ ∪ ran 𝑓 ) |
| 155 | sseq1 | ⊢ ( 𝑆 = ∪ 𝑡 → ( 𝑆 ⊆ ∪ ran 𝑓 ↔ ∪ 𝑡 ⊆ ∪ ran 𝑓 ) ) | |
| 156 | 155 | ad2antlr | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ( 𝑆 ⊆ ∪ ran 𝑓 ↔ ∪ 𝑡 ⊆ ∪ ran 𝑓 ) ) |
| 157 | 154 156 | mpbird | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → 𝑆 ⊆ ∪ ran 𝑓 ) |
| 158 | 116 157 | jca | ⊢ ( ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) ∧ ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) ) → ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) ) |
| 159 | 158 | ex | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) → ( ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) ) ) |
| 160 | 159 | eximdv | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) ∧ 𝑆 = ∪ 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ∃ 𝑓 ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) ) ) |
| 161 | 160 | ex | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → ( 𝑆 = ∪ 𝑡 → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ∃ 𝑓 ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) ) ) ) |
| 162 | 161 | com23 | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( 𝑆 = ∪ 𝑡 → ∃ 𝑓 ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) ) ) ) |
| 163 | unieq | ⊢ ( 𝑑 = ran 𝑓 → ∪ 𝑑 = ∪ ran 𝑓 ) | |
| 164 | 163 | sseq2d | ⊢ ( 𝑑 = ran 𝑓 → ( 𝑆 ⊆ ∪ 𝑑 ↔ 𝑆 ⊆ ∪ ran 𝑓 ) ) |
| 165 | 164 | rspcev | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) |
| 166 | 165 | exlimiv | ⊢ ( ∃ 𝑓 ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑆 ⊆ ∪ ran 𝑓 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) |
| 167 | 162 166 | syl8 | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑐 ∧ ∀ 𝑠 ∈ 𝑡 𝑠 = ( ( 𝑓 ‘ 𝑠 ) ∩ 𝑆 ) ) → ( 𝑆 = ∪ 𝑡 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 168 | 97 167 | mpd | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑦 ∈ 𝑐 𝑠 = ( 𝑦 ∩ 𝑆 ) ∧ 𝑡 ∈ Fin ) ) → ( 𝑆 = ∪ 𝑡 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 169 | 92 168 | sylan2b | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) ∧ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ) → ( 𝑆 = ∪ 𝑡 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 170 | 169 | rexlimdva | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 171 | 81 170 | biimtrrid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( ( 𝑆 = 𝑆 → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) 𝑆 = ∪ 𝑡 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 172 | 79 171 | sylbird | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝑐 ) → ( ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 173 | 172 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( 𝑆 ⊆ ∪ 𝑐 → ( ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 174 | 173 | com23 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } → ∃ 𝑡 ∈ ( 𝒫 { 𝑥 ∣ ∃ 𝑦 ∈ 𝑐 𝑥 = ( 𝑦 ∩ 𝑆 ) } ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 175 | 53 174 | syld | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑐 ∈ 𝒫 𝐽 ) → ( ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 176 | 175 | ralrimdva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 177 | 1 | cmpsublem | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 178 | 176 177 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 179 | 13 178 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |