This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cmpsub . (Contributed by Jeff Hankins, 28-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmpsub.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cmpsublem | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpsub.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | rabexg | ⊢ ( 𝐽 ∈ Top → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V ) |
| 4 | ssrab2 | ⊢ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ⊆ 𝐽 | |
| 5 | elpwg | ⊢ ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V → ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ↔ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ⊆ 𝐽 ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ V → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ) |
| 7 | 3 6 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ) |
| 8 | unieq | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∪ 𝑐 = ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) | |
| 9 | 8 | sseq2d | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑆 ⊆ ∪ 𝑐 ↔ 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
| 10 | pweq | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → 𝒫 𝑐 = 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) | |
| 11 | 10 | ineq1d | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝒫 𝑐 ∩ Fin ) = ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) ) |
| 12 | 11 | rexeqdv | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ↔ ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 13 | 9 12 | imbi12d | ⊢ ( 𝑐 = { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ↔ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 14 | 13 | rspcva | ⊢ ( ( { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∈ 𝒫 𝐽 ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 15 | 7 14 | sylan | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) |
| 16 | 15 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) ) |
| 17 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 ↔ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 ) ) |
| 20 | velpw | ⊢ ( 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ↔ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) | |
| 21 | eleq2 | ⊢ ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 ↔ 𝑡 ∈ ∪ 𝑠 ) ) | |
| 22 | eluni | ⊢ ( 𝑡 ∈ ∪ 𝑠 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 ↔ ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) ) ) |
| 25 | ssel | ⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ) ) | |
| 26 | 1 | sseq2i | ⊢ ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽 ) |
| 27 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 28 | ssexg | ⊢ ( ( 𝑆 ⊆ ∪ 𝐽 ∧ ∪ 𝐽 ∈ V ) → 𝑆 ∈ V ) | |
| 29 | 28 | ancoms | ⊢ ( ( ∪ 𝐽 ∈ V ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ∈ V ) |
| 30 | 27 29 | sylan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ∈ V ) |
| 31 | 26 30 | sylan2b | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 32 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ) | |
| 33 | 31 32 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) ↔ ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ) |
| 34 | inss1 | ⊢ ( 𝑤 ∩ 𝑆 ) ⊆ 𝑤 | |
| 35 | sseq1 | ⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ⊆ 𝑤 ↔ ( 𝑤 ∩ 𝑆 ) ⊆ 𝑤 ) ) | |
| 36 | 34 35 | mpbiri | ⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → 𝑢 ⊆ 𝑤 ) |
| 37 | 36 | sselda | ⊢ ( ( 𝑢 = ( 𝑤 ∩ 𝑆 ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
| 38 | 37 | 3ad2antl3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
| 39 | 38 | 3adant2 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ 𝑤 ) |
| 40 | ineq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∩ 𝑆 ) = ( 𝑤 ∩ 𝑆 ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 ↔ ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) ) |
| 42 | simp12 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) | |
| 43 | eleq1 | ⊢ ( 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ∈ 𝑠 ↔ ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) ) | |
| 44 | 43 | biimpa | ⊢ ( ( 𝑢 = ( 𝑤 ∩ 𝑆 ) ∧ 𝑢 ∈ 𝑠 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
| 45 | 44 | 3ad2antl3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
| 46 | 45 | 3adant3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → ( 𝑤 ∩ 𝑆 ) ∈ 𝑠 ) |
| 47 | 41 42 46 | elrabd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
| 48 | vex | ⊢ 𝑤 ∈ V | |
| 49 | eleq2 | ⊢ ( 𝑣 = 𝑤 → ( 𝑡 ∈ 𝑣 ↔ 𝑡 ∈ 𝑤 ) ) | |
| 50 | eleq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) | |
| 51 | 49 50 | anbi12d | ⊢ ( 𝑣 = 𝑤 → ( ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ↔ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 52 | 48 51 | spcev | ⊢ ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
| 53 | 39 47 52 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) ∧ 𝑢 ∈ 𝑠 ∧ 𝑡 ∈ 𝑢 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
| 54 | 53 | 3exp | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑢 = ( 𝑤 ∩ 𝑆 ) ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
| 55 | 54 | rexlimdv3a | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑤 ∈ 𝐽 𝑢 = ( 𝑤 ∩ 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 56 | 33 55 | sylbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 57 | 56 | com23 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑢 ∈ 𝑠 → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑡 ∈ 𝑢 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 58 | 57 | com4l | ⊢ ( 𝑢 ∈ 𝑠 → ( 𝑢 ∈ ( 𝐽 ↾t 𝑆 ) → ( 𝑡 ∈ 𝑢 → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 59 | 25 58 | sylcom | ⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( 𝑢 ∈ 𝑠 → ( 𝑡 ∈ 𝑢 → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 60 | 59 | com24 | ⊢ ( 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) → ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑡 ∈ 𝑢 → ( 𝑢 ∈ 𝑠 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( 𝑡 ∈ 𝑢 → ( 𝑢 ∈ 𝑠 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
| 62 | 61 | impd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 63 | 62 | exlimdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( ∃ 𝑢 ( 𝑡 ∈ 𝑢 ∧ 𝑢 ∈ 𝑠 ) → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 65 | 24 64 | sylbid | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ⊆ ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
| 67 | 20 66 | sylan2b | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) ) |
| 69 | eluni | ⊢ ( 𝑡 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ ∃ 𝑣 ( 𝑡 ∈ 𝑣 ∧ 𝑣 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) | |
| 70 | 68 69 | imbitrrdi | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑡 ∈ 𝑆 → 𝑡 ∈ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) |
| 71 | 70 | ssrdv | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) |
| 72 | pm2.27 | ⊢ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) ) | |
| 73 | elin | ⊢ ( 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) ↔ ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ) | |
| 74 | vex | ⊢ 𝑡 ∈ V | |
| 75 | eqeq1 | ⊢ ( 𝑥 = 𝑡 → ( 𝑥 = ( 𝑧 ∩ 𝑆 ) ↔ 𝑡 = ( 𝑧 ∩ 𝑆 ) ) ) | |
| 76 | 75 | rexbidv | ⊢ ( 𝑥 = 𝑡 → ( ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) ↔ ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) ) ) |
| 77 | 74 76 | elab | ⊢ ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ↔ ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) ) |
| 78 | velpw | ⊢ ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) | |
| 79 | ssel | ⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑧 ∈ 𝑑 → 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ) ) | |
| 80 | ineq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∩ 𝑆 ) = ( 𝑧 ∩ 𝑆 ) ) | |
| 81 | 80 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 ↔ ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 ) ) |
| 82 | 81 | elrab | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ↔ ( 𝑧 ∈ 𝐽 ∧ ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 ) ) |
| 83 | eleq1a | ⊢ ( ( 𝑧 ∩ 𝑆 ) ∈ 𝑠 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) | |
| 84 | 82 83 | simplbiim | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) |
| 85 | 79 84 | syl6 | ⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) |
| 86 | 85 | 2a1d | ⊢ ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝑑 ⊆ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
| 88 | 78 87 | sylanb | ⊢ ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) ) ) |
| 89 | 88 | 3imp | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( 𝑧 ∈ 𝑑 → ( 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) ) |
| 90 | 89 | rexlimdv | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( ∃ 𝑧 ∈ 𝑑 𝑡 = ( 𝑧 ∩ 𝑆 ) → 𝑡 ∈ 𝑠 ) ) |
| 91 | 77 90 | biimtrid | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ( 𝑡 ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } → 𝑡 ∈ 𝑠 ) ) |
| 92 | 91 | ssrdv | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ⊆ 𝑠 ) |
| 93 | vex | ⊢ 𝑑 ∈ V | |
| 94 | 93 | abrexex | ⊢ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ V |
| 95 | 94 | elpw | ⊢ ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ 𝒫 𝑠 ↔ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ⊆ 𝑠 ) |
| 96 | 92 95 | sylibr | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ 𝒫 𝑠 ) |
| 97 | abrexfi | ⊢ ( 𝑑 ∈ Fin → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) | |
| 98 | 97 | ad2antlr | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) |
| 99 | 98 | 3adant3 | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ Fin ) |
| 100 | 96 99 | elind | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ ( 𝒫 𝑠 ∩ Fin ) ) |
| 101 | dfss | ⊢ ( 𝑆 ⊆ ∪ 𝑑 ↔ 𝑆 = ( 𝑆 ∩ ∪ 𝑑 ) ) | |
| 102 | 101 | biimpi | ⊢ ( 𝑆 ⊆ ∪ 𝑑 → 𝑆 = ( 𝑆 ∩ ∪ 𝑑 ) ) |
| 103 | uniiun | ⊢ ∪ 𝑑 = ∪ 𝑧 ∈ 𝑑 𝑧 | |
| 104 | 103 | ineq2i | ⊢ ( 𝑆 ∩ ∪ 𝑑 ) = ( 𝑆 ∩ ∪ 𝑧 ∈ 𝑑 𝑧 ) |
| 105 | iunin2 | ⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑆 ∩ 𝑧 ) = ( 𝑆 ∩ ∪ 𝑧 ∈ 𝑑 𝑧 ) | |
| 106 | incom | ⊢ ( 𝑆 ∩ 𝑧 ) = ( 𝑧 ∩ 𝑆 ) | |
| 107 | 106 | a1i | ⊢ ( 𝑧 ∈ 𝑑 → ( 𝑆 ∩ 𝑧 ) = ( 𝑧 ∩ 𝑆 ) ) |
| 108 | 107 | iuneq2i | ⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑆 ∩ 𝑧 ) = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) |
| 109 | 104 105 108 | 3eqtr2i | ⊢ ( 𝑆 ∩ ∪ 𝑑 ) = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) |
| 110 | 102 109 | eqtrdi | ⊢ ( 𝑆 ⊆ ∪ 𝑑 → 𝑆 = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) ) |
| 111 | 110 | 3ad2ant2 | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) ) |
| 112 | 18 | ad2antrl | ⊢ ( ( 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 113 | 112 | 3adant1 | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → 𝑆 = ∪ ( 𝐽 ↾t 𝑆 ) ) |
| 114 | vex | ⊢ 𝑧 ∈ V | |
| 115 | 114 | inex1 | ⊢ ( 𝑧 ∩ 𝑆 ) ∈ V |
| 116 | 115 | dfiun2 | ⊢ ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } |
| 117 | 116 | a1i | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∪ 𝑧 ∈ 𝑑 ( 𝑧 ∩ 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) |
| 118 | 111 113 117 | 3eqtr3d | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) |
| 119 | unieq | ⊢ ( 𝑡 = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } → ∪ 𝑡 = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) | |
| 120 | 119 | rspceeqv | ⊢ ( ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ∈ ( 𝒫 𝑠 ∩ Fin ) ∧ ∪ ( 𝐽 ↾t 𝑆 ) = ∪ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑑 𝑥 = ( 𝑧 ∩ 𝑆 ) } ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) |
| 121 | 100 118 120 | syl2anc | ⊢ ( ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) ∧ 𝑆 ⊆ ∪ 𝑑 ∧ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) |
| 122 | 121 | 3exp | ⊢ ( ( 𝑑 ∈ 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∧ 𝑑 ∈ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 123 | 73 122 | sylbi | ⊢ ( 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) → ( 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 124 | 123 | rexlimiv | ⊢ ( ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 125 | 72 124 | syl6 | ⊢ ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 126 | 125 | com3r | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 127 | 71 126 | mpd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) ∧ 𝑆 = ∪ 𝑠 ) → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) |
| 128 | 127 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( 𝑆 = ∪ 𝑠 → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 129 | 19 128 | sylbird | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 130 | 129 | com23 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ( 𝑆 ⊆ ∪ { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } → ∃ 𝑑 ∈ ( 𝒫 { 𝑦 ∈ 𝐽 ∣ ( 𝑦 ∩ 𝑆 ) ∈ 𝑠 } ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 131 | 16 130 | syld | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |
| 132 | 131 | ralrimdva | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑑 ) → ∀ 𝑠 ∈ 𝒫 ( 𝐽 ↾t 𝑆 ) ( ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑠 → ∃ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ∪ ( 𝐽 ↾t 𝑆 ) = ∪ 𝑡 ) ) ) |