This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | pweq | ⊢ ( 𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽 ) | |
| 3 | unieq | ⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽 ) | |
| 4 | 3 1 | eqtr4di | ⊢ ( 𝑥 = 𝐽 → ∪ 𝑥 = 𝑋 ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
| 6 | 4 | eqeq1d | ⊢ ( 𝑥 = 𝐽 → ( ∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧 ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑥 = 𝐽 → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑥 = 𝐽 → ( ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 9 | 2 8 | raleqbidv | ⊢ ( 𝑥 = 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 10 | df-cmp | ⊢ Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( ∪ 𝑥 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝑥 = ∪ 𝑧 ) } | |
| 11 | 9 10 | elrab2 | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |