This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of ac6s for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac6sfi.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6sfi.1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | raleq | ⊢ ( 𝑢 = ∅ → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 3 | feq2 | ⊢ ( 𝑢 = ∅ → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : ∅ ⟶ 𝐵 ) ) | |
| 4 | raleq | ⊢ ( 𝑢 = ∅ → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ ∅ 𝜓 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑢 = ∅ → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝑢 = ∅ → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) |
| 7 | 2 6 | imbi12d | ⊢ ( 𝑢 = ∅ → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) ) ) |
| 8 | raleq | ⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 9 | feq2 | ⊢ ( 𝑢 = 𝑤 → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : 𝑤 ⟶ 𝐵 ) ) | |
| 10 | raleq | ⊢ ( 𝑢 = 𝑤 → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑢 = 𝑤 → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
| 12 | 11 | exbidv | ⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
| 13 | 8 12 | imbi12d | ⊢ ( 𝑢 = 𝑤 → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) ) |
| 14 | raleq | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 15 | feq2 | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) | |
| 16 | raleq | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) ) |
| 18 | 17 | exbidv | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ) ) |
| 19 | feq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ↔ 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) | |
| 20 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 21 | 20 1 | sbcie | ⊢ ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| 22 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) | |
| 23 | 22 | sbceq1d | ⊢ ( 𝑓 = 𝑔 → ( [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 24 | 21 23 | bitr3id | ⊢ ( 𝑓 = 𝑔 → ( 𝜓 ↔ [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 26 | 19 25 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ↔ ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
| 27 | 26 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) 𝜓 ) ↔ ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 28 | 18 27 | bitrdi | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
| 29 | 14 28 | imbi12d | ⊢ ( 𝑢 = ( 𝑤 ∪ { 𝑧 } ) → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 30 | raleq | ⊢ ( 𝑢 = 𝐴 → ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 31 | feq2 | ⊢ ( 𝑢 = 𝐴 → ( 𝑓 : 𝑢 ⟶ 𝐵 ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) | |
| 32 | raleq | ⊢ ( 𝑢 = 𝐴 → ( ∀ 𝑥 ∈ 𝑢 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 33 | 31 32 | anbi12d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 34 | 33 | exbidv | ⊢ ( 𝑢 = 𝐴 → ( ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 35 | 30 34 | imbi12d | ⊢ ( 𝑢 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑢 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑢 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑢 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) ) |
| 36 | f0 | ⊢ ∅ : ∅ ⟶ 𝐵 | |
| 37 | 0ex | ⊢ ∅ ∈ V | |
| 38 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ 𝜓 | |
| 39 | 38 | biantru | ⊢ ( 𝑓 : ∅ ⟶ 𝐵 ↔ ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
| 40 | feq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ ⟶ 𝐵 ↔ ∅ : ∅ ⟶ 𝐵 ) ) | |
| 41 | 39 40 | bitr3id | ⊢ ( 𝑓 = ∅ → ( ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ↔ ∅ : ∅ ⟶ 𝐵 ) ) |
| 42 | 37 41 | spcev | ⊢ ( ∅ : ∅ ⟶ 𝐵 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
| 43 | 36 42 | mp1i | ⊢ ( ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : ∅ ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ∅ 𝜓 ) ) |
| 44 | ssun1 | ⊢ 𝑤 ⊆ ( 𝑤 ∪ { 𝑧 } ) | |
| 45 | ssralv | ⊢ ( 𝑤 ⊆ ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 47 | 46 | imim1i | ⊢ ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) ) |
| 48 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑤 ∪ { 𝑧 } ) | |
| 49 | ssralv | ⊢ ( { 𝑧 } ⊆ ( 𝑤 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 50 | 48 49 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 51 | ralsnsg | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 52 | 51 | elv | ⊢ ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 53 | sbcrex | ⊢ ( [ 𝑧 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 54 | 52 53 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝑧 } ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 55 | 50 54 | sylib | ⊢ ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 56 | nfv | ⊢ Ⅎ 𝑦 ¬ 𝑧 ∈ 𝑤 | |
| 57 | nfv | ⊢ Ⅎ 𝑦 ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) | |
| 58 | nfv | ⊢ Ⅎ 𝑦 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 | |
| 59 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑤 ∪ { 𝑧 } ) | |
| 60 | nfsbc1v | ⊢ Ⅎ 𝑦 [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 | |
| 61 | 59 60 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 |
| 62 | 58 61 | nfan | ⊢ Ⅎ 𝑦 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 63 | 62 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 64 | 57 63 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 65 | simprl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑓 : 𝑤 ⟶ 𝐵 ) | |
| 66 | vex | ⊢ 𝑧 ∈ V | |
| 67 | vex | ⊢ 𝑦 ∈ V | |
| 68 | 66 67 | f1osn | ⊢ { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } –1-1-onto→ { 𝑦 } |
| 69 | f1of | ⊢ ( { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } –1-1-onto→ { 𝑦 } → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ { 𝑦 } ) | |
| 70 | 68 69 | mp1i | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ { 𝑦 } ) |
| 71 | simpl2 | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑦 ∈ 𝐵 ) | |
| 72 | 71 | snssd | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 𝑦 } ⊆ 𝐵 ) |
| 73 | 70 72 | fssd | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → { 〈 𝑧 , 𝑦 〉 } : { 𝑧 } ⟶ 𝐵 ) |
| 74 | simpl1 | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ¬ 𝑧 ∈ 𝑤 ) | |
| 75 | disjsn | ⊢ ( ( 𝑤 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑤 ) | |
| 76 | 74 75 | sylibr | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( 𝑤 ∩ { 𝑧 } ) = ∅ ) |
| 77 | 65 73 76 | fun2d | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 78 | simprr | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ 𝑤 𝜓 ) | |
| 79 | eleq1a | ⊢ ( 𝑥 ∈ 𝑤 → ( 𝑧 = 𝑥 → 𝑧 ∈ 𝑤 ) ) | |
| 80 | 79 | necon3bd | ⊢ ( 𝑥 ∈ 𝑤 → ( ¬ 𝑧 ∈ 𝑤 → 𝑧 ≠ 𝑥 ) ) |
| 81 | 80 | impcom | ⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 ≠ 𝑥 ) |
| 82 | fvunsn | ⊢ ( 𝑧 ≠ 𝑥 → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 83 | dfsbcq | ⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) → ( [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑓 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) | |
| 84 | 83 21 | bitr2di | ⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) → ( 𝜓 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 85 | 81 82 84 | 3syl | ⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑥 ∈ 𝑤 ) → ( 𝜓 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 86 | 85 | ralbidva | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑥 ∈ 𝑤 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 87 | 74 86 | syl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ 𝑤 𝜓 ↔ ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 88 | 78 87 | mpbid | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 89 | simpl3 | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 90 | ffun | ⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 → Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ) | |
| 91 | ssun2 | ⊢ { 〈 𝑧 , 𝑦 〉 } ⊆ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) | |
| 92 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 93 | 67 | dmsnop | ⊢ dom { 〈 𝑧 , 𝑦 〉 } = { 𝑧 } |
| 94 | 92 93 | eleqtrri | ⊢ 𝑧 ∈ dom { 〈 𝑧 , 𝑦 〉 } |
| 95 | funssfv | ⊢ ( ( Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∧ { 〈 𝑧 , 𝑦 〉 } ⊆ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∧ 𝑧 ∈ dom { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) | |
| 96 | 91 94 95 | mp3an23 | ⊢ ( Fun ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) |
| 97 | 77 90 96 | 3syl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) ) |
| 98 | 66 67 | fvsn | ⊢ ( { 〈 𝑧 , 𝑦 〉 } ‘ 𝑧 ) = 𝑦 |
| 99 | 97 98 | eqtr2di | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) |
| 100 | ralsnsg | ⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 101 | 100 | elv | ⊢ ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 102 | elsni | ⊢ ( 𝑥 ∈ { 𝑧 } → 𝑥 = 𝑧 ) | |
| 103 | 102 | fveq2d | ⊢ ( 𝑥 ∈ { 𝑧 } → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) |
| 104 | 103 | eqeq2d | ⊢ ( 𝑥 ∈ { 𝑧 } → ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ↔ 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ) ) |
| 105 | 104 | biimparc | ⊢ ( ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ∧ 𝑥 ∈ { 𝑧 } ) → 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ) |
| 106 | sbceq1a | ⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) → ( 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) ∧ 𝑥 ∈ { 𝑧 } ) → ( 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 108 | 107 | ralbidva | ⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) → ( ∀ 𝑥 ∈ { 𝑧 } 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 109 | 101 108 | bitr3id | ⊢ ( 𝑦 = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑧 ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 110 | 99 109 | syl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 111 | 89 110 | mpbid | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 112 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝑤 [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ∧ ∀ 𝑥 ∈ { 𝑧 } [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) | |
| 113 | 88 111 112 | syl2anc | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) |
| 114 | vex | ⊢ 𝑓 ∈ V | |
| 115 | snex | ⊢ { 〈 𝑧 , 𝑦 〉 } ∈ V | |
| 116 | 114 115 | unex | ⊢ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ∈ V |
| 117 | feq1 | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ) ) | |
| 118 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( 𝑔 ‘ 𝑥 ) = ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) ) | |
| 119 | 118 | sbceq1d | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 120 | 119 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 121 | 117 120 | anbi12d | ⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) → ( ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ↔ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
| 122 | 116 121 | spcev | ⊢ ( ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑦 〉 } ) ‘ 𝑥 ) / 𝑦 ] 𝜑 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 123 | 77 113 122 | syl2anc | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) |
| 124 | 123 | ex | ⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
| 125 | 124 | exlimdv | ⊢ ( ( ¬ 𝑧 ∈ 𝑤 ∧ 𝑦 ∈ 𝐵 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) |
| 126 | 125 | 3exp | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝐵 → ( [ 𝑧 / 𝑥 ] 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) ) |
| 127 | 56 64 126 | rexlimd | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∃ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 128 | 55 127 | syl5 | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 129 | 128 | a2d | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 130 | 47 129 | syl5 | ⊢ ( ¬ 𝑧 ∈ 𝑤 → ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 131 | 130 | adantl | ⊢ ( ( 𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤 ) → ( ( ∀ 𝑥 ∈ 𝑤 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑤 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑤 𝜓 ) ) → ( ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑔 ( 𝑔 : ( 𝑤 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ ( 𝑤 ∪ { 𝑧 } ) [ ( 𝑔 ‘ 𝑥 ) / 𝑦 ] 𝜑 ) ) ) ) |
| 132 | 7 13 29 35 43 131 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 133 | 132 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |