This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto function implies dominance of domain over range, for finite sets. Unlike fodomg for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 16-Nov-2014) Avoid ax-pow . (Revised by BTernaryTau, 20-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foima | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 “ 𝐴 ) = 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 “ 𝐴 ) = 𝐵 ) |
| 3 | imaeq2 | ⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ∅ ) ) | |
| 4 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ∅ ) |
| 6 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 7 | 5 6 | breq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ∅ ≼ ∅ ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ∅ ≼ ∅ ) ) ) |
| 9 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) ) |
| 13 | imaeq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 14 | id | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝑥 = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 17 | imaeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝐴 ) ) | |
| 18 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 19 | 17 18 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 “ 𝑥 ) ≼ 𝑥 ↔ ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑥 ) ≼ 𝑥 ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) ) |
| 21 | 0ex | ⊢ ∅ ∈ V | |
| 22 | 21 | 0dom | ⊢ ∅ ≼ ∅ |
| 23 | 22 | a1i | ⊢ ( 𝐹 Fn 𝐴 → ∅ ≼ ∅ ) |
| 24 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → Fun 𝐹 ) |
| 26 | funressn | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) | |
| 27 | rnss | ⊢ ( ( 𝐹 ↾ { 𝑧 } ) ⊆ { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } → ran ( 𝐹 ↾ { 𝑧 } ) ⊆ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) | |
| 28 | 25 26 27 | 3syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ran ( 𝐹 ↾ { 𝑧 } ) ⊆ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } ) |
| 29 | df-ima | ⊢ ( 𝐹 “ { 𝑧 } ) = ran ( 𝐹 ↾ { 𝑧 } ) | |
| 30 | vex | ⊢ 𝑧 ∈ V | |
| 31 | 30 | rnsnop | ⊢ ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } = { ( 𝐹 ‘ 𝑧 ) } |
| 32 | 31 | eqcomi | ⊢ { ( 𝐹 ‘ 𝑧 ) } = ran { 〈 𝑧 , ( 𝐹 ‘ 𝑧 ) 〉 } |
| 33 | 28 29 32 | 3sstr4g | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } ) |
| 34 | snfi | ⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ Fin | |
| 35 | ssexg | ⊢ ( ( ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ∈ Fin ) → ( 𝐹 “ { 𝑧 } ) ∈ V ) | |
| 36 | 33 34 35 | sylancl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ∈ V ) |
| 37 | fvi | ⊢ ( ( 𝐹 “ { 𝑧 } ) ∈ V → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) = ( 𝐹 “ { 𝑧 } ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) = ( 𝐹 “ { 𝑧 } ) ) |
| 39 | 38 | uneq2d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) ) |
| 40 | imaundi | ⊢ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) | |
| 41 | 39 40 | eqtr4di | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 42 | simprr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) | |
| 43 | ssdomfi | ⊢ ( { ( 𝐹 ‘ 𝑧 ) } ∈ Fin → ( ( 𝐹 “ { 𝑧 } ) ⊆ { ( 𝐹 ‘ 𝑧 ) } → ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ) ) | |
| 44 | 34 33 43 | mpsyl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ) |
| 45 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 46 | en2sn | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ V ∧ 𝑧 ∈ V ) → { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } ) | |
| 47 | 45 30 46 | mp2an | ⊢ { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } |
| 48 | endom | ⊢ ( { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } → { ( 𝐹 ‘ 𝑧 ) } ≼ { 𝑧 } ) | |
| 49 | domtrfi | ⊢ ( ( { ( 𝐹 ‘ 𝑧 ) } ∈ Fin ∧ ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ≼ { 𝑧 } ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) | |
| 50 | 34 49 | mp3an1 | ⊢ ( ( ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ≼ { 𝑧 } ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) |
| 51 | 48 50 | sylan2 | ⊢ ( ( ( 𝐹 “ { 𝑧 } ) ≼ { ( 𝐹 ‘ 𝑧 ) } ∧ { ( 𝐹 ‘ 𝑧 ) } ≈ { 𝑧 } ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) |
| 52 | 44 47 51 | sylancl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ { 𝑧 } ) ≼ { 𝑧 } ) |
| 53 | 38 52 | eqbrtrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ≼ { 𝑧 } ) |
| 54 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 55 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 56 | 54 55 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 57 | undom | ⊢ ( ( ( ( 𝐹 “ 𝑦 ) ≼ 𝑦 ∧ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ≼ { 𝑧 } ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 58 | 42 53 56 57 | syl21anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( ( 𝐹 “ 𝑦 ) ∪ ( I ‘ ( 𝐹 “ { 𝑧 } ) ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) |
| 59 | 41 58 | eqbrtrrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐹 Fn 𝐴 ∧ ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) |
| 60 | 59 | exp32 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐹 Fn 𝐴 → ( ( 𝐹 “ 𝑦 ) ≼ 𝑦 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 61 | 60 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝑦 ) ≼ 𝑦 ) → ( 𝐹 Fn 𝐴 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ≼ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 62 | 8 12 16 20 23 61 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝐹 Fn 𝐴 → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) ) |
| 63 | fofn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 64 | 62 63 | impel | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝐹 “ 𝐴 ) ≼ 𝐴 ) |
| 65 | 2 64 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) |