This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in class union. (Contributed by NM, 22-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluni | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ ∪ 𝐵 → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑥 → 𝐴 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ V ) |
| 5 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 7 | 6 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 8 | df-uni | ⊢ ∪ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) } | |
| 9 | 7 8 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 10 | 1 4 9 | pm5.21nii | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) |