This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub , which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgcmp | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ ( topGen ‘ 𝐵 ) = ∪ ( topGen ‘ 𝐵 ) | |
| 2 | 1 | iscmp | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ) ) |
| 3 | 2 | simprbi | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ) |
| 4 | unitg | ⊢ ( 𝐵 ∈ TopBases → ∪ ( topGen ‘ 𝐵 ) = ∪ 𝐵 ) | |
| 5 | eqtr3 | ⊢ ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝐵 ∧ 𝑋 = ∪ 𝐵 ) → ∪ ( topGen ‘ 𝐵 ) = 𝑋 ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ∪ ( topGen ‘ 𝐵 ) = 𝑋 ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
| 8 | 6 | eqeq1d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧 ) ) |
| 9 | 8 | rexbidv | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 12 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 14 | 13 | sspwd | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) ) |
| 15 | ssralv | ⊢ ( 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 17 | 11 16 | sylbid | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 18 | 3 17 | syl5 | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 19 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 20 | simprr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ 𝑢 ) | |
| 21 | simprl | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 22 | 21 | sselda | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) ) |
| 23 | 22 | adantrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) ) |
| 24 | simprr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝑡 ) | |
| 25 | tg2 | ⊢ ( ( 𝑡 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ 𝑡 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
| 27 | 26 | expr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ 𝑡 ∈ 𝑢 ) → ( 𝑦 ∈ 𝑡 → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) ) |
| 28 | 27 | reximdva | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∃ 𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 → ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) ) |
| 29 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝑢 ↔ ∃ 𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 ) | |
| 30 | elunirab | ⊢ ( 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) | |
| 31 | r19.42v | ⊢ ( ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) | |
| 32 | 31 | rexbii | ⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) |
| 33 | rexcom | ⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) | |
| 34 | 30 32 33 | 3bitr2i | ⊢ ( 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
| 35 | 28 29 34 | 3imtr4g | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( 𝑦 ∈ ∪ 𝑢 → 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) ) |
| 36 | 35 | ssrdv | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ∪ 𝑢 ⊆ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
| 37 | 20 36 | eqsstrd | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 ⊆ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
| 38 | ssrab2 | ⊢ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 | |
| 39 | 38 | unissi | ⊢ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ ∪ 𝐵 |
| 40 | simplr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ 𝐵 ) | |
| 41 | 39 40 | sseqtrrid | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝑋 ) |
| 42 | 37 41 | eqssd | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
| 43 | elpw2g | ⊢ ( 𝐵 ∈ TopBases → ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 ) ) | |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 ) ) |
| 45 | 38 44 | mpbiri | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ) |
| 46 | unieq | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∪ 𝑦 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) | |
| 47 | 46 | eqeq2d | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) ) |
| 48 | pweq | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → 𝒫 𝑦 = 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) | |
| 49 | 48 | ineq1d | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ) |
| 50 | 49 | rexeqdv | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 51 | 47 50 | imbi12d | ⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 52 | 51 | rspcv | ⊢ ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 53 | 45 52 | syl | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
| 54 | 42 53 | mpid | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
| 55 | elfpw | ⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ↔ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∧ 𝑧 ∈ Fin ) ) | |
| 56 | 55 | simprbi | ⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) → 𝑧 ∈ Fin ) |
| 57 | 56 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → 𝑧 ∈ Fin ) |
| 58 | 55 | simplbi | ⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) → 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
| 59 | 58 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
| 60 | ssrab | ⊢ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) | |
| 61 | 60 | simprbi | ⊢ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) |
| 62 | 59 61 | syl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) |
| 63 | sseq2 | ⊢ ( 𝑡 = ( 𝑓 ‘ 𝑤 ) → ( 𝑤 ⊆ 𝑡 ↔ 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) | |
| 64 | 63 | ac6sfi | ⊢ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 65 | 57 62 64 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
| 66 | frn | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → ran 𝑓 ⊆ 𝑢 ) | |
| 67 | 66 | ad2antrl | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ⊆ 𝑢 ) |
| 68 | ffn | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → 𝑓 Fn 𝑧 ) | |
| 69 | dffn4 | ⊢ ( 𝑓 Fn 𝑧 ↔ 𝑓 : 𝑧 –onto→ ran 𝑓 ) | |
| 70 | 68 69 | sylib | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → 𝑓 : 𝑧 –onto→ ran 𝑓 ) |
| 71 | 70 | adantr | ⊢ ( ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝑓 : 𝑧 –onto→ ran 𝑓 ) |
| 72 | fofi | ⊢ ( ( 𝑧 ∈ Fin ∧ 𝑓 : 𝑧 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) | |
| 73 | 57 71 72 | syl2an | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ∈ Fin ) |
| 74 | elfpw | ⊢ ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑢 ∧ ran 𝑓 ∈ Fin ) ) | |
| 75 | 67 73 74 | sylanbrc | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 76 | simplrr | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ 𝑧 ) | |
| 77 | uniiun | ⊢ ∪ 𝑧 = ∪ 𝑤 ∈ 𝑧 𝑤 | |
| 78 | ss2iun | ⊢ ( ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) → ∪ 𝑤 ∈ 𝑧 𝑤 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) | |
| 79 | 77 78 | eqsstrid | ⊢ ( ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) |
| 80 | 79 | ad2antll | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) |
| 81 | fniunfv | ⊢ ( 𝑓 Fn 𝑧 → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) | |
| 82 | 68 81 | syl | ⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) |
| 83 | 82 | ad2antrl | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) |
| 84 | 80 83 | sseqtrd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑧 ⊆ ∪ ran 𝑓 ) |
| 85 | 76 84 | eqsstrd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 ⊆ ∪ ran 𝑓 ) |
| 86 | 67 | unissd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 ⊆ ∪ 𝑢 ) |
| 87 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ 𝑢 ) |
| 88 | 86 87 | sseqtrrd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 89 | 85 88 | eqssd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ ran 𝑓 ) |
| 90 | unieq | ⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑣 = ∪ ran 𝑓 ) | |
| 91 | 90 | rspceeqv | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ∪ ran 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
| 92 | 75 89 91 | syl2anc | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
| 93 | 65 92 | exlimddv | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
| 94 | 93 | rexlimdvaa | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
| 95 | 54 94 | syld | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
| 96 | 95 | expr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( 𝑋 = ∪ 𝑢 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 97 | 96 | com23 | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 98 | 19 97 | sylan2 | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 99 | 98 | ralrimdva | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 100 | tgcl | ⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 101 | 100 | adantr | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 102 | 1 | iscmp | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
| 103 | 102 | baib | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
| 104 | 101 103 | syl | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
| 105 | 6 | eqeq1d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑢 ) ) |
| 106 | 6 | eqeq1d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ↔ 𝑋 = ∪ 𝑣 ) ) |
| 107 | 106 | rexbidv | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
| 108 | 105 107 | imbi12d | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ↔ ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 109 | 108 | ralbidv | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 110 | 104 109 | bitrd | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
| 111 | 99 110 | sylibrd | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( topGen ‘ 𝐵 ) ∈ Comp ) ) |
| 112 | 18 111 | impbid | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |