This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imafi | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) = ( 𝐹 “ 𝑋 ) | |
| 2 | simpr | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) | |
| 3 | dmres | ⊢ dom ( 𝐹 ↾ 𝑋 ) = ( 𝑋 ∩ dom 𝐹 ) | |
| 4 | inss1 | ⊢ ( 𝑋 ∩ dom 𝐹 ) ⊆ 𝑋 | |
| 5 | 3 4 | eqsstri | ⊢ dom ( 𝐹 ↾ 𝑋 ) ⊆ 𝑋 |
| 6 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ dom ( 𝐹 ↾ 𝑋 ) ⊆ 𝑋 ) → dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ) | |
| 7 | 2 5 6 | sylancl | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ) |
| 8 | resss | ⊢ ( 𝐹 ↾ 𝑋 ) ⊆ 𝐹 | |
| 9 | dmss | ⊢ ( ( 𝐹 ↾ 𝑋 ) ⊆ 𝐹 → dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) |
| 11 | fores | ⊢ ( ( Fun 𝐹 ∧ dom ( 𝐹 ↾ 𝑋 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) |
| 13 | fofi | ⊢ ( ( dom ( 𝐹 ↾ 𝑋 ) ∈ Fin ∧ ( 𝐹 ↾ dom ( 𝐹 ↾ 𝑋 ) ) : dom ( 𝐹 ↾ 𝑋 ) –onto→ ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ) → ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ∈ Fin ) | |
| 14 | 7 12 13 | syl2anc | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ dom ( 𝐹 ↾ 𝑋 ) ) ∈ Fin ) |
| 15 | 1 14 | eqeltrrid | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |