This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | ||
| Assertion | opncldf1 | ⊢ ( 𝐽 ∈ Top → ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | |
| 3 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ) → ( 𝑋 ∖ 𝑢 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 | 1 | cldopn | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝐽 ) |
| 6 | 1 | cldss | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) → 𝑥 ⊆ 𝑋 ) |
| 7 | 6 | ad2antll | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑥 ⊆ 𝑋 ) |
| 8 | dfss4 | ⊢ ( 𝑥 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑥 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) |
| 11 | difeq2 | ⊢ ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → ( 𝑋 ∖ 𝑢 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) | |
| 12 | 11 | eqeq2d | ⊢ ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → ( 𝑥 = ( 𝑋 ∖ 𝑢 ) ↔ 𝑥 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| 13 | 10 12 | syl5ibrcom | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) → 𝑥 = ( 𝑋 ∖ 𝑢 ) ) ) |
| 14 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ) → 𝑢 ⊆ 𝑋 ) |
| 15 | 14 | adantrr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑢 ⊆ 𝑋 ) |
| 16 | dfss4 | ⊢ ( 𝑢 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) = 𝑢 ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) = 𝑢 ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑢 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) |
| 19 | difeq2 | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) ↔ 𝑢 = ( 𝑋 ∖ ( 𝑋 ∖ 𝑢 ) ) ) ) |
| 21 | 18 20 | syl5ibrcom | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑥 = ( 𝑋 ∖ 𝑢 ) → 𝑢 = ( 𝑋 ∖ 𝑥 ) ) ) |
| 22 | 13 21 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( 𝑢 = ( 𝑋 ∖ 𝑥 ) ↔ 𝑥 = ( 𝑋 ∖ 𝑢 ) ) ) |
| 23 | 2 3 5 22 | f1ocnv2d | ⊢ ( 𝐽 ∈ Top → ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) ) |