This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vn0 | ⊢ V ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vextru | ⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } | |
| 2 | fal | ⊢ ¬ ⊥ | |
| 3 | 1 2 | 2th | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ¬ ⊥ ) |
| 4 | xor3 | ⊢ ( ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ↔ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ¬ ⊥ ) ) | |
| 5 | 3 4 | mpbir | ⊢ ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 6 | 5 | exgen | ⊢ ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 7 | exnal | ⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) | |
| 8 | 6 7 | mpbi | ⊢ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) |
| 9 | dfv2 | ⊢ V = { 𝑥 ∣ ⊤ } | |
| 10 | dfnul4 | ⊢ ∅ = { 𝑥 ∣ ⊥ } | |
| 11 | 9 10 | eqeq12i | ⊢ ( V = ∅ ↔ { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ) |
| 12 | biidd | ⊢ ( 𝑥 = 𝑦 → ( ⊥ ↔ ⊥ ) ) | |
| 13 | 12 | eqabbw | ⊢ ( { 𝑥 ∣ ⊤ } = { 𝑥 ∣ ⊥ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) |
| 14 | 11 13 | bitri | ⊢ ( V = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ ⊤ } ↔ ⊥ ) ) |
| 15 | 8 14 | mtbir | ⊢ ¬ V = ∅ |
| 16 | 15 | neir | ⊢ V ≠ ∅ |