This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexun | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ) | |
| 2 | 19.43 | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 3 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ) |
| 5 | andir | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 8 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 9 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 10 | 8 9 | orbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 11 | 2 7 10 | 3bitr4i | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
| 12 | 1 11 | bitri | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |