This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 15-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| ralxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| ralxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ralxfrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| 2 | ralxfrd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | ralxfrd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 5 | 1 4 | rspcdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 6 | 5 | ralrimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |
| 7 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → ∃ 𝑦 ∈ 𝐶 ( 𝜒 ∧ 𝑥 = 𝐴 ) ) | |
| 8 | 3 | exbiri | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜒 → 𝜓 ) ) ) |
| 9 | 8 | impcomd | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 10 | 9 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝜒 ∧ 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 11 | 7 10 | syl5 | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 13 | 2 12 | mpan2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐶 𝜒 → 𝜓 ) ) |
| 14 | 13 | ralrimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐶 𝜒 → ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 15 | 6 14 | impbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |