This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use uniiun to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iindif2 | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.28zv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ) ) | |
| 2 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) | |
| 3 | 2 | bicomi | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 5 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 6 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 7 | 5 6 | xchbinxr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 9 | 1 4 8 | 3bitr3g | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) ) |
| 10 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 11 | 10 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 12 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 13 | 9 11 12 | 3bitr4g | ⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) ) |
| 14 | 13 | eqrdv | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |