This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmpfii | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑋 ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝑋 ) ) → ∩ 𝑋 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( Clsd ‘ 𝐽 ) ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝑋 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ 𝑋 ⊆ ( Clsd ‘ 𝐽 ) ) |
| 3 | 2 | biimpri | ⊢ ( 𝑋 ⊆ ( Clsd ‘ 𝐽 ) → 𝑋 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
| 4 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 5 | cmpfi | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐽 ∈ Comp → ( 𝐽 ∈ Comp ↔ ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐽 ∈ Comp → ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( fi ‘ 𝑥 ) = ( fi ‘ 𝑋 ) ) | |
| 9 | 8 | eleq2d | ⊢ ( 𝑥 = 𝑋 → ( ∅ ∈ ( fi ‘ 𝑥 ) ↔ ∅ ∈ ( fi ‘ 𝑋 ) ) ) |
| 10 | 9 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( fi ‘ 𝑋 ) ) ) |
| 11 | inteq | ⊢ ( 𝑥 = 𝑋 → ∩ 𝑥 = ∩ 𝑋 ) | |
| 12 | 11 | neeq1d | ⊢ ( 𝑥 = 𝑋 → ( ∩ 𝑥 ≠ ∅ ↔ ∩ 𝑋 ≠ ∅ ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ 𝑋 ) → ∩ 𝑋 ≠ ∅ ) ) ) |
| 14 | 13 | rspcva | ⊢ ( ( 𝑋 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑥 ) → ∩ 𝑥 ≠ ∅ ) ) → ( ¬ ∅ ∈ ( fi ‘ 𝑋 ) → ∩ 𝑋 ≠ ∅ ) ) |
| 15 | 3 7 14 | syl2anr | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑋 ⊆ ( Clsd ‘ 𝐽 ) ) → ( ¬ ∅ ∈ ( fi ‘ 𝑋 ) → ∩ 𝑋 ≠ ∅ ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑋 ⊆ ( Clsd ‘ 𝐽 ) ∧ ¬ ∅ ∈ ( fi ‘ 𝑋 ) ) → ∩ 𝑋 ≠ ∅ ) |