This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence h , we can construct the sequence g that we are after. (Contributed by Mario Carneiro, 30-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem2.1 | ⊢ 𝐴 ∈ V | |
| axdc3lem2.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | ||
| axdc3lem2.3 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) | ||
| Assertion | axdc3lem2 | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem2.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc3lem2.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | |
| 3 | axdc3lem2.3 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) | |
| 4 | id | ⊢ ( 𝑚 = ∅ → 𝑚 = ∅ ) | |
| 5 | fveq2 | ⊢ ( 𝑚 = ∅ → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ ∅ ) ) | |
| 6 | 5 | dmeqd | ⊢ ( 𝑚 = ∅ → dom ( ℎ ‘ 𝑚 ) = dom ( ℎ ‘ ∅ ) ) |
| 7 | 4 6 | eleq12d | ⊢ ( 𝑚 = ∅ → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ↔ ∅ ∈ dom ( ℎ ‘ ∅ ) ) ) |
| 8 | eleq2 | ⊢ ( 𝑚 = ∅ → ( 𝑗 ∈ 𝑚 ↔ 𝑗 ∈ ∅ ) ) | |
| 9 | 5 | sseq2d | ⊢ ( 𝑚 = ∅ → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) ) |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑚 = ∅ → ( ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ↔ ( 𝑗 ∈ ∅ → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) ) ) |
| 11 | 7 10 | anbi12d | ⊢ ( 𝑚 = ∅ → ( ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ∧ ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ↔ ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ ( 𝑗 ∈ ∅ → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) ) ) ) |
| 12 | id | ⊢ ( 𝑚 = 𝑖 → 𝑚 = 𝑖 ) | |
| 13 | fveq2 | ⊢ ( 𝑚 = 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑖 ) ) | |
| 14 | 13 | dmeqd | ⊢ ( 𝑚 = 𝑖 → dom ( ℎ ‘ 𝑚 ) = dom ( ℎ ‘ 𝑖 ) ) |
| 15 | 12 14 | eleq12d | ⊢ ( 𝑚 = 𝑖 → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ↔ 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ) ) |
| 16 | elequ2 | ⊢ ( 𝑚 = 𝑖 → ( 𝑗 ∈ 𝑚 ↔ 𝑗 ∈ 𝑖 ) ) | |
| 17 | 13 | sseq2d | ⊢ ( 𝑚 = 𝑖 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ↔ ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ∧ ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ↔ ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 20 | id | ⊢ ( 𝑚 = suc 𝑖 → 𝑚 = suc 𝑖 ) | |
| 21 | fveq2 | ⊢ ( 𝑚 = suc 𝑖 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ suc 𝑖 ) ) | |
| 22 | 21 | dmeqd | ⊢ ( 𝑚 = suc 𝑖 → dom ( ℎ ‘ 𝑚 ) = dom ( ℎ ‘ suc 𝑖 ) ) |
| 23 | 20 22 | eleq12d | ⊢ ( 𝑚 = suc 𝑖 → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ↔ suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ) ) |
| 24 | eleq2 | ⊢ ( 𝑚 = suc 𝑖 → ( 𝑗 ∈ 𝑚 ↔ 𝑗 ∈ suc 𝑖 ) ) | |
| 25 | 21 | sseq2d | ⊢ ( 𝑚 = suc 𝑖 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) |
| 26 | 24 25 | imbi12d | ⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ↔ ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 27 | 23 26 | anbi12d | ⊢ ( 𝑚 = suc 𝑖 → ( ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ∧ ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ↔ ( suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ∧ ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) ) |
| 28 | peano1 | ⊢ ∅ ∈ ω | |
| 29 | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∅ ∈ ω ) → ( ℎ ‘ ∅ ) ∈ 𝑆 ) | |
| 30 | 28 29 | mpan2 | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ℎ ‘ ∅ ) ∈ 𝑆 ) |
| 31 | fdm | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → dom 𝑠 = suc 𝑛 ) | |
| 32 | nnord | ⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) | |
| 33 | 0elsuc | ⊢ ( Ord 𝑛 → ∅ ∈ suc 𝑛 ) | |
| 34 | 32 33 | syl | ⊢ ( 𝑛 ∈ ω → ∅ ∈ suc 𝑛 ) |
| 35 | peano2 | ⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) | |
| 36 | eleq2 | ⊢ ( dom 𝑠 = suc 𝑛 → ( ∅ ∈ dom 𝑠 ↔ ∅ ∈ suc 𝑛 ) ) | |
| 37 | eleq1 | ⊢ ( dom 𝑠 = suc 𝑛 → ( dom 𝑠 ∈ ω ↔ suc 𝑛 ∈ ω ) ) | |
| 38 | 36 37 | anbi12d | ⊢ ( dom 𝑠 = suc 𝑛 → ( ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ↔ ( ∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω ) ) ) |
| 39 | 38 | biimprcd | ⊢ ( ( ∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω ) → ( dom 𝑠 = suc 𝑛 → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) ) |
| 40 | 34 35 39 | syl2anc | ⊢ ( 𝑛 ∈ ω → ( dom 𝑠 = suc 𝑛 → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) ) |
| 41 | 31 40 | syl5com | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → ( 𝑛 ∈ ω → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( 𝑛 ∈ ω → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) ) |
| 43 | 42 | impcom | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) |
| 44 | 43 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ) |
| 45 | 44 | ss2abi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } |
| 46 | 2 45 | eqsstri | ⊢ 𝑆 ⊆ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } |
| 47 | 46 | sseli | ⊢ ( ( ℎ ‘ ∅ ) ∈ 𝑆 → ( ℎ ‘ ∅ ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ) |
| 48 | fvex | ⊢ ( ℎ ‘ ∅ ) ∈ V | |
| 49 | dmeq | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → dom 𝑠 = dom ( ℎ ‘ ∅ ) ) | |
| 50 | 49 | eleq2d | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → ( ∅ ∈ dom 𝑠 ↔ ∅ ∈ dom ( ℎ ‘ ∅ ) ) ) |
| 51 | 49 | eleq1d | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → ( dom 𝑠 ∈ ω ↔ dom ( ℎ ‘ ∅ ) ∈ ω ) ) |
| 52 | 50 51 | anbi12d | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → ( ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ↔ ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ dom ( ℎ ‘ ∅ ) ∈ ω ) ) ) |
| 53 | 48 52 | elab | ⊢ ( ( ℎ ‘ ∅ ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ↔ ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ dom ( ℎ ‘ ∅ ) ∈ ω ) ) |
| 54 | 47 53 | sylib | ⊢ ( ( ℎ ‘ ∅ ) ∈ 𝑆 → ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ dom ( ℎ ‘ ∅ ) ∈ ω ) ) |
| 55 | 54 | simpld | ⊢ ( ( ℎ ‘ ∅ ) ∈ 𝑆 → ∅ ∈ dom ( ℎ ‘ ∅ ) ) |
| 56 | 30 55 | syl | ⊢ ( ℎ : ω ⟶ 𝑆 → ∅ ∈ dom ( ℎ ‘ ∅ ) ) |
| 57 | noel | ⊢ ¬ 𝑗 ∈ ∅ | |
| 58 | 57 | pm2.21i | ⊢ ( 𝑗 ∈ ∅ → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) |
| 59 | 56 58 | jctir | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ ( 𝑗 ∈ ∅ → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ∅ ∈ dom ( ℎ ‘ ∅ ) ∧ ( 𝑗 ∈ ∅ → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ ∅ ) ) ) ) |
| 61 | ffvelcdm | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑖 ∈ ω ) → ( ℎ ‘ 𝑖 ) ∈ 𝑆 ) | |
| 62 | 61 | ancoms | ⊢ ( ( 𝑖 ∈ ω ∧ ℎ : ω ⟶ 𝑆 ) → ( ℎ ‘ 𝑖 ) ∈ 𝑆 ) |
| 63 | 62 | adantrr | ⊢ ( ( 𝑖 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ℎ ‘ 𝑖 ) ∈ 𝑆 ) |
| 64 | suceq | ⊢ ( 𝑘 = 𝑖 → suc 𝑘 = suc 𝑖 ) | |
| 65 | 64 | fveq2d | ⊢ ( 𝑘 = 𝑖 → ( ℎ ‘ suc 𝑘 ) = ( ℎ ‘ suc 𝑖 ) ) |
| 66 | 2fveq3 | ⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) | |
| 67 | 65 66 | eleq12d | ⊢ ( 𝑘 = 𝑖 → ( ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 68 | 67 | rspcva | ⊢ ( ( 𝑖 ∈ ω ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) |
| 69 | 68 | adantrl | ⊢ ( ( 𝑖 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) |
| 70 | 46 | sseli | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( ℎ ‘ 𝑖 ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ) |
| 71 | fvex | ⊢ ( ℎ ‘ 𝑖 ) ∈ V | |
| 72 | dmeq | ⊢ ( 𝑠 = ( ℎ ‘ 𝑖 ) → dom 𝑠 = dom ( ℎ ‘ 𝑖 ) ) | |
| 73 | 72 | eleq2d | ⊢ ( 𝑠 = ( ℎ ‘ 𝑖 ) → ( ∅ ∈ dom 𝑠 ↔ ∅ ∈ dom ( ℎ ‘ 𝑖 ) ) ) |
| 74 | 72 | eleq1d | ⊢ ( 𝑠 = ( ℎ ‘ 𝑖 ) → ( dom 𝑠 ∈ ω ↔ dom ( ℎ ‘ 𝑖 ) ∈ ω ) ) |
| 75 | 73 74 | anbi12d | ⊢ ( 𝑠 = ( ℎ ‘ 𝑖 ) → ( ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ↔ ( ∅ ∈ dom ( ℎ ‘ 𝑖 ) ∧ dom ( ℎ ‘ 𝑖 ) ∈ ω ) ) ) |
| 76 | 71 75 | elab | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ↔ ( ∅ ∈ dom ( ℎ ‘ 𝑖 ) ∧ dom ( ℎ ‘ 𝑖 ) ∈ ω ) ) |
| 77 | 70 76 | sylib | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( ∅ ∈ dom ( ℎ ‘ 𝑖 ) ∧ dom ( ℎ ‘ 𝑖 ) ∈ ω ) ) |
| 78 | 77 | simprd | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → dom ( ℎ ‘ 𝑖 ) ∈ ω ) |
| 79 | nnord | ⊢ ( dom ( ℎ ‘ 𝑖 ) ∈ ω → Ord dom ( ℎ ‘ 𝑖 ) ) | |
| 80 | ordsucelsuc | ⊢ ( Ord dom ( ℎ ‘ 𝑖 ) → ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ↔ suc 𝑖 ∈ suc dom ( ℎ ‘ 𝑖 ) ) ) | |
| 81 | 78 79 80 | 3syl | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ↔ suc 𝑖 ∈ suc dom ( ℎ ‘ 𝑖 ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ↔ suc 𝑖 ∈ suc dom ( ℎ ‘ 𝑖 ) ) ) |
| 83 | dmeq | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → dom 𝑥 = dom ( ℎ ‘ 𝑖 ) ) | |
| 84 | suceq | ⊢ ( dom 𝑥 = dom ( ℎ ‘ 𝑖 ) → suc dom 𝑥 = suc dom ( ℎ ‘ 𝑖 ) ) | |
| 85 | 83 84 | syl | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → suc dom 𝑥 = suc dom ( ℎ ‘ 𝑖 ) ) |
| 86 | 85 | eqeq2d | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → ( dom 𝑦 = suc dom 𝑥 ↔ dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ) ) |
| 87 | 83 | reseq2d | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → ( 𝑦 ↾ dom 𝑥 ) = ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) ) |
| 88 | id | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → 𝑥 = ( ℎ ‘ 𝑖 ) ) | |
| 89 | 87 88 | eqeq12d | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → ( ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ↔ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) |
| 90 | 86 89 | anbi12d | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → ( ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ↔ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) ) |
| 91 | 90 | rabbidv | ⊢ ( 𝑥 = ( ℎ ‘ 𝑖 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } = { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) } ) |
| 92 | 1 2 | axdc3lem | ⊢ 𝑆 ∈ V |
| 93 | 92 | rabex | ⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) } ∈ V |
| 94 | 91 3 93 | fvmpt | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) = { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) } ) |
| 95 | 94 | eleq2d | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ℎ ‘ suc 𝑖 ) ∈ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) } ) ) |
| 96 | dmeq | ⊢ ( 𝑦 = ( ℎ ‘ suc 𝑖 ) → dom 𝑦 = dom ( ℎ ‘ suc 𝑖 ) ) | |
| 97 | 96 | eqeq1d | ⊢ ( 𝑦 = ( ℎ ‘ suc 𝑖 ) → ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ↔ dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ) ) |
| 98 | reseq1 | ⊢ ( 𝑦 = ( ℎ ‘ suc 𝑖 ) → ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) ) | |
| 99 | 98 | eqeq1d | ⊢ ( 𝑦 = ( ℎ ‘ suc 𝑖 ) → ( ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ↔ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) |
| 100 | 97 99 | anbi12d | ⊢ ( 𝑦 = ( ℎ ‘ suc 𝑖 ) → ( ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ↔ ( dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ∧ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) ) |
| 101 | 100 | elrab | ⊢ ( ( ℎ ‘ suc 𝑖 ) ∈ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑦 ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) } ↔ ( ( ℎ ‘ suc 𝑖 ) ∈ 𝑆 ∧ ( dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ∧ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) ) |
| 102 | 95 101 | bitrdi | ⊢ ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 → ( ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ( ℎ ‘ suc 𝑖 ) ∈ 𝑆 ∧ ( dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ∧ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 103 | 102 | simplbda | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ∧ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) ) |
| 104 | 103 | simpld | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → dom ( ℎ ‘ suc 𝑖 ) = suc dom ( ℎ ‘ 𝑖 ) ) |
| 105 | 104 | eleq2d | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ↔ suc 𝑖 ∈ suc dom ( ℎ ‘ 𝑖 ) ) ) |
| 106 | 82 105 | bitr4d | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ↔ suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ) ) |
| 107 | 106 | biimpd | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) → suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ) ) |
| 108 | 103 | simprd | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) ) |
| 109 | resss | ⊢ ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) ⊆ ( ℎ ‘ suc 𝑖 ) | |
| 110 | sseq1 | ⊢ ( ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) → ( ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) ⊆ ( ℎ ‘ suc 𝑖 ) ↔ ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) | |
| 111 | 109 110 | mpbii | ⊢ ( ( ( ℎ ‘ suc 𝑖 ) ↾ dom ( ℎ ‘ 𝑖 ) ) = ( ℎ ‘ 𝑖 ) → ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) |
| 112 | elsuci | ⊢ ( 𝑗 ∈ suc 𝑖 → ( 𝑗 ∈ 𝑖 ∨ 𝑗 = 𝑖 ) ) | |
| 113 | pm2.27 | ⊢ ( 𝑗 ∈ 𝑖 → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) | |
| 114 | sstr2 | ⊢ ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) | |
| 115 | 113 114 | syl6 | ⊢ ( 𝑗 ∈ 𝑖 → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 116 | fveq2 | ⊢ ( 𝑗 = 𝑖 → ( ℎ ‘ 𝑗 ) = ( ℎ ‘ 𝑖 ) ) | |
| 117 | 116 | sseq1d | ⊢ ( 𝑗 = 𝑖 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ↔ ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) |
| 118 | 117 | biimprd | ⊢ ( 𝑗 = 𝑖 → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) |
| 119 | 118 | a1d | ⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 120 | 115 119 | jaoi | ⊢ ( ( 𝑗 ∈ 𝑖 ∨ 𝑗 = 𝑖 ) → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 121 | 112 120 | syl | ⊢ ( 𝑗 ∈ suc 𝑖 → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 122 | 121 | com13 | ⊢ ( ( ℎ ‘ 𝑖 ) ⊆ ( ℎ ‘ suc 𝑖 ) → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 123 | 108 111 122 | 3syl | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) → ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) |
| 124 | 107 123 | anim12d | ⊢ ( ( ( ℎ ‘ 𝑖 ) ∈ 𝑆 ∧ ( ℎ ‘ suc 𝑖 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑖 ) ) ) → ( ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) → ( suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ∧ ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) ) |
| 125 | 63 69 124 | syl2anc | ⊢ ( ( 𝑖 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) → ( suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ∧ ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) ) |
| 126 | 125 | ex | ⊢ ( 𝑖 ∈ ω → ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( 𝑖 ∈ dom ( ℎ ‘ 𝑖 ) ∧ ( 𝑗 ∈ 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑖 ) ) ) → ( suc 𝑖 ∈ dom ( ℎ ‘ suc 𝑖 ) ∧ ( 𝑗 ∈ suc 𝑖 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ suc 𝑖 ) ) ) ) ) ) |
| 127 | 11 19 27 60 126 | finds2 | ⊢ ( 𝑚 ∈ ω → ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ∧ ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ) ) |
| 128 | 127 | imp | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ∧ ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ) |
| 129 | 128 | simprd | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) |
| 130 | 129 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → ( 𝑗 ∈ 𝑚 → ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) ) |
| 131 | 130 | ralrimdv | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) ) |
| 132 | 131 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) |
| 133 | frn | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ℎ ⊆ 𝑆 ) | |
| 134 | ffun | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → Fun 𝑠 ) | |
| 135 | 134 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → Fun 𝑠 ) |
| 136 | 135 | rexlimivw | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → Fun 𝑠 ) |
| 137 | 136 | ss2abi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ { 𝑠 ∣ Fun 𝑠 } |
| 138 | 2 137 | eqsstri | ⊢ 𝑆 ⊆ { 𝑠 ∣ Fun 𝑠 } |
| 139 | 133 138 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ℎ ⊆ { 𝑠 ∣ Fun 𝑠 } ) |
| 140 | 139 | sseld | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑢 ∈ ran ℎ → 𝑢 ∈ { 𝑠 ∣ Fun 𝑠 } ) ) |
| 141 | vex | ⊢ 𝑢 ∈ V | |
| 142 | funeq | ⊢ ( 𝑠 = 𝑢 → ( Fun 𝑠 ↔ Fun 𝑢 ) ) | |
| 143 | 141 142 | elab | ⊢ ( 𝑢 ∈ { 𝑠 ∣ Fun 𝑠 } ↔ Fun 𝑢 ) |
| 144 | 140 143 | imbitrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑢 ∈ ran ℎ → Fun 𝑢 ) ) |
| 145 | 144 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ( 𝑢 ∈ ran ℎ → Fun 𝑢 ) ) |
| 146 | ffn | ⊢ ( ℎ : ω ⟶ 𝑆 → ℎ Fn ω ) | |
| 147 | fvelrnb | ⊢ ( ℎ Fn ω → ( 𝑣 ∈ ran ℎ ↔ ∃ 𝑏 ∈ ω ( ℎ ‘ 𝑏 ) = 𝑣 ) ) | |
| 148 | fvelrnb | ⊢ ( ℎ Fn ω → ( 𝑢 ∈ ran ℎ ↔ ∃ 𝑎 ∈ ω ( ℎ ‘ 𝑎 ) = 𝑢 ) ) | |
| 149 | nnord | ⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) | |
| 150 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 151 | 149 150 | anim12i | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( Ord 𝑎 ∧ Ord 𝑏 ) ) |
| 152 | ordtri3or | ⊢ ( ( Ord 𝑎 ∧ Ord 𝑏 ) → ( 𝑎 ∈ 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ∈ 𝑎 ) ) | |
| 153 | fveq2 | ⊢ ( 𝑚 = 𝑏 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑏 ) ) | |
| 154 | 153 | sseq2d | ⊢ ( 𝑚 = 𝑏 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) |
| 155 | 154 | raleqbi1dv | ⊢ ( 𝑚 = 𝑏 → ( ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝑏 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) |
| 156 | 155 | rspcv | ⊢ ( 𝑏 ∈ ω → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ∀ 𝑗 ∈ 𝑏 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) |
| 157 | fveq2 | ⊢ ( 𝑗 = 𝑎 → ( ℎ ‘ 𝑗 ) = ( ℎ ‘ 𝑎 ) ) | |
| 158 | 157 | sseq1d | ⊢ ( 𝑗 = 𝑎 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑏 ) ↔ ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) |
| 159 | 158 | rspccv | ⊢ ( ∀ 𝑗 ∈ 𝑏 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑏 ) → ( 𝑎 ∈ 𝑏 → ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) |
| 160 | 156 159 | syl6 | ⊢ ( 𝑏 ∈ ω → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑎 ∈ 𝑏 → ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) ) |
| 161 | 160 | adantl | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑎 ∈ 𝑏 → ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) ) ) |
| 162 | 161 | 3imp | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ∧ 𝑎 ∈ 𝑏 ) → ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) |
| 163 | 162 | orcd | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ∧ 𝑎 ∈ 𝑏 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 164 | 163 | 3exp | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑎 ∈ 𝑏 → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 165 | 164 | com3r | ⊢ ( 𝑎 ∈ 𝑏 → ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 166 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( ℎ ‘ 𝑎 ) = ( ℎ ‘ 𝑏 ) ) | |
| 167 | eqimss | ⊢ ( ( ℎ ‘ 𝑎 ) = ( ℎ ‘ 𝑏 ) → ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ) | |
| 168 | 167 | orcd | ⊢ ( ( ℎ ‘ 𝑎 ) = ( ℎ ‘ 𝑏 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 169 | 166 168 | syl | ⊢ ( 𝑎 = 𝑏 → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 170 | 169 | 2a1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 171 | fveq2 | ⊢ ( 𝑚 = 𝑎 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑎 ) ) | |
| 172 | 171 | sseq2d | ⊢ ( 𝑚 = 𝑎 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 173 | 172 | raleqbi1dv | ⊢ ( 𝑚 = 𝑎 → ( ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝑎 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 174 | 173 | rspcv | ⊢ ( 𝑎 ∈ ω → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ∀ 𝑗 ∈ 𝑎 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 175 | fveq2 | ⊢ ( 𝑗 = 𝑏 → ( ℎ ‘ 𝑗 ) = ( ℎ ‘ 𝑏 ) ) | |
| 176 | 175 | sseq1d | ⊢ ( 𝑗 = 𝑏 → ( ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑎 ) ↔ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 177 | 176 | rspccv | ⊢ ( ∀ 𝑗 ∈ 𝑎 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑎 ) → ( 𝑏 ∈ 𝑎 → ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 178 | 174 177 | syl6 | ⊢ ( 𝑎 ∈ ω → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑏 ∈ 𝑎 → ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) |
| 179 | 178 | adantr | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑏 ∈ 𝑎 → ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) |
| 180 | 179 | 3imp | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ∧ 𝑏 ∈ 𝑎 ) → ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) |
| 181 | 180 | olcd | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) |
| 182 | 181 | 3exp | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑏 ∈ 𝑎 → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 183 | 182 | com3r | ⊢ ( 𝑏 ∈ 𝑎 → ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 184 | 165 170 183 | 3jaoi | ⊢ ( ( 𝑎 ∈ 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ∈ 𝑎 ) → ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 185 | 152 184 | syl | ⊢ ( ( Ord 𝑎 ∧ Ord 𝑏 ) → ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) ) |
| 186 | 151 185 | mpcom | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ) ) |
| 187 | sseq12 | ⊢ ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ↔ 𝑢 ⊆ 𝑣 ) ) | |
| 188 | sseq12 | ⊢ ( ( ( ℎ ‘ 𝑏 ) = 𝑣 ∧ ( ℎ ‘ 𝑎 ) = 𝑢 ) → ( ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ↔ 𝑣 ⊆ 𝑢 ) ) | |
| 189 | 188 | ancoms | ⊢ ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ↔ 𝑣 ⊆ 𝑢 ) ) |
| 190 | 187 189 | orbi12d | ⊢ ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) ↔ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 191 | 190 | biimpcd | ⊢ ( ( ( ℎ ‘ 𝑎 ) ⊆ ( ℎ ‘ 𝑏 ) ∨ ( ℎ ‘ 𝑏 ) ⊆ ( ℎ ‘ 𝑎 ) ) → ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 192 | 186 191 | syl6 | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 193 | 192 | com23 | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) → ( ( ( ℎ ‘ 𝑎 ) = 𝑢 ∧ ( ℎ ‘ 𝑏 ) = 𝑣 ) → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 194 | 193 | exp4b | ⊢ ( 𝑎 ∈ ω → ( 𝑏 ∈ ω → ( ( ℎ ‘ 𝑎 ) = 𝑢 → ( ( ℎ ‘ 𝑏 ) = 𝑣 → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) ) |
| 195 | 194 | com23 | ⊢ ( 𝑎 ∈ ω → ( ( ℎ ‘ 𝑎 ) = 𝑢 → ( 𝑏 ∈ ω → ( ( ℎ ‘ 𝑏 ) = 𝑣 → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) ) |
| 196 | 195 | rexlimiv | ⊢ ( ∃ 𝑎 ∈ ω ( ℎ ‘ 𝑎 ) = 𝑢 → ( 𝑏 ∈ ω → ( ( ℎ ‘ 𝑏 ) = 𝑣 → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) |
| 197 | 196 | rexlimdv | ⊢ ( ∃ 𝑎 ∈ ω ( ℎ ‘ 𝑎 ) = 𝑢 → ( ∃ 𝑏 ∈ ω ( ℎ ‘ 𝑏 ) = 𝑣 → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 198 | 148 197 | biimtrdi | ⊢ ( ℎ Fn ω → ( 𝑢 ∈ ran ℎ → ( ∃ 𝑏 ∈ ω ( ℎ ‘ 𝑏 ) = 𝑣 → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) |
| 199 | 198 | com23 | ⊢ ( ℎ Fn ω → ( ∃ 𝑏 ∈ ω ( ℎ ‘ 𝑏 ) = 𝑣 → ( 𝑢 ∈ ran ℎ → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) |
| 200 | 147 199 | sylbid | ⊢ ( ℎ Fn ω → ( 𝑣 ∈ ran ℎ → ( 𝑢 ∈ ran ℎ → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) |
| 201 | 200 | com24 | ⊢ ( ℎ Fn ω → ( ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) → ( 𝑢 ∈ ran ℎ → ( 𝑣 ∈ ran ℎ → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) ) |
| 202 | 201 | imp | ⊢ ( ( ℎ Fn ω ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ( 𝑢 ∈ ran ℎ → ( 𝑣 ∈ ran ℎ → ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 203 | 202 | ralrimdv | ⊢ ( ( ℎ Fn ω ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ( 𝑢 ∈ ran ℎ → ∀ 𝑣 ∈ ran ℎ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 204 | 146 203 | sylan | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ( 𝑢 ∈ ran ℎ → ∀ 𝑣 ∈ ran ℎ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 205 | 145 204 | jcad | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ( 𝑢 ∈ ran ℎ → ( Fun 𝑢 ∧ ∀ 𝑣 ∈ ran ℎ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) ) |
| 206 | 205 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → ∀ 𝑢 ∈ ran ℎ ( Fun 𝑢 ∧ ∀ 𝑣 ∈ ran ℎ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) ) |
| 207 | fununi | ⊢ ( ∀ 𝑢 ∈ ran ℎ ( Fun 𝑢 ∧ ∀ 𝑣 ∈ ran ℎ ( 𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢 ) ) → Fun ∪ ran ℎ ) | |
| 208 | 206 207 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑚 ∈ ω ∀ 𝑗 ∈ 𝑚 ( ℎ ‘ 𝑗 ) ⊆ ( ℎ ‘ 𝑚 ) ) → Fun ∪ ran ℎ ) |
| 209 | 132 208 | syldan | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → Fun ∪ ran ℎ ) |
| 210 | vex | ⊢ 𝑚 ∈ V | |
| 211 | 210 | eldm2 | ⊢ ( 𝑚 ∈ dom ∪ ran ℎ ↔ ∃ 𝑢 〈 𝑚 , 𝑢 〉 ∈ ∪ ran ℎ ) |
| 212 | eluni2 | ⊢ ( 〈 𝑚 , 𝑢 〉 ∈ ∪ ran ℎ ↔ ∃ 𝑣 ∈ ran ℎ 〈 𝑚 , 𝑢 〉 ∈ 𝑣 ) | |
| 213 | 210 141 | opeldm | ⊢ ( 〈 𝑚 , 𝑢 〉 ∈ 𝑣 → 𝑚 ∈ dom 𝑣 ) |
| 214 | 213 | a1i | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 〈 𝑚 , 𝑢 〉 ∈ 𝑣 → 𝑚 ∈ dom 𝑣 ) ) |
| 215 | 133 46 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ℎ ⊆ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ) |
| 216 | ssel | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } → ( 𝑣 ∈ ran ℎ → 𝑣 ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ) ) | |
| 217 | vex | ⊢ 𝑣 ∈ V | |
| 218 | dmeq | ⊢ ( 𝑠 = 𝑣 → dom 𝑠 = dom 𝑣 ) | |
| 219 | 218 | eleq2d | ⊢ ( 𝑠 = 𝑣 → ( ∅ ∈ dom 𝑠 ↔ ∅ ∈ dom 𝑣 ) ) |
| 220 | 218 | eleq1d | ⊢ ( 𝑠 = 𝑣 → ( dom 𝑠 ∈ ω ↔ dom 𝑣 ∈ ω ) ) |
| 221 | 219 220 | anbi12d | ⊢ ( 𝑠 = 𝑣 → ( ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ↔ ( ∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω ) ) ) |
| 222 | 217 221 | elab | ⊢ ( 𝑣 ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ↔ ( ∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω ) ) |
| 223 | 222 | simprbi | ⊢ ( 𝑣 ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } → dom 𝑣 ∈ ω ) |
| 224 | 216 223 | syl6 | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } → ( 𝑣 ∈ ran ℎ → dom 𝑣 ∈ ω ) ) |
| 225 | 215 224 | syl | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑣 ∈ ran ℎ → dom 𝑣 ∈ ω ) ) |
| 226 | 214 225 | anim12d | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ( 〈 𝑚 , 𝑢 〉 ∈ 𝑣 ∧ 𝑣 ∈ ran ℎ ) → ( 𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω ) ) ) |
| 227 | elnn | ⊢ ( ( 𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω ) → 𝑚 ∈ ω ) | |
| 228 | 226 227 | syl6 | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ( 〈 𝑚 , 𝑢 〉 ∈ 𝑣 ∧ 𝑣 ∈ ran ℎ ) → 𝑚 ∈ ω ) ) |
| 229 | 228 | expcomd | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑣 ∈ ran ℎ → ( 〈 𝑚 , 𝑢 〉 ∈ 𝑣 → 𝑚 ∈ ω ) ) ) |
| 230 | 229 | rexlimdv | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ∃ 𝑣 ∈ ran ℎ 〈 𝑚 , 𝑢 〉 ∈ 𝑣 → 𝑚 ∈ ω ) ) |
| 231 | 212 230 | biimtrid | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 〈 𝑚 , 𝑢 〉 ∈ ∪ ran ℎ → 𝑚 ∈ ω ) ) |
| 232 | 231 | exlimdv | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ∃ 𝑢 〈 𝑚 , 𝑢 〉 ∈ ∪ ran ℎ → 𝑚 ∈ ω ) ) |
| 233 | 211 232 | biimtrid | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑚 ∈ dom ∪ ran ℎ → 𝑚 ∈ ω ) ) |
| 234 | 233 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ dom ∪ ran ℎ → 𝑚 ∈ ω ) ) |
| 235 | id | ⊢ ( 𝑚 ∈ ω → 𝑚 ∈ ω ) | |
| 236 | fnfvelrn | ⊢ ( ( ℎ Fn ω ∧ 𝑚 ∈ ω ) → ( ℎ ‘ 𝑚 ) ∈ ran ℎ ) | |
| 237 | 146 235 236 | syl2anr | ⊢ ( ( 𝑚 ∈ ω ∧ ℎ : ω ⟶ 𝑆 ) → ( ℎ ‘ 𝑚 ) ∈ ran ℎ ) |
| 238 | 237 | adantrr | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → ( ℎ ‘ 𝑚 ) ∈ ran ℎ ) |
| 239 | 128 | simpld | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ) |
| 240 | dmeq | ⊢ ( 𝑢 = ( ℎ ‘ 𝑚 ) → dom 𝑢 = dom ( ℎ ‘ 𝑚 ) ) | |
| 241 | 240 | eliuni | ⊢ ( ( ( ℎ ‘ 𝑚 ) ∈ ran ℎ ∧ 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ) → 𝑚 ∈ ∪ 𝑢 ∈ ran ℎ dom 𝑢 ) |
| 242 | 238 239 241 | syl2anc | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → 𝑚 ∈ ∪ 𝑢 ∈ ran ℎ dom 𝑢 ) |
| 243 | dmuni | ⊢ dom ∪ ran ℎ = ∪ 𝑢 ∈ ran ℎ dom 𝑢 | |
| 244 | 242 243 | eleqtrrdi | ⊢ ( ( 𝑚 ∈ ω ∧ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) → 𝑚 ∈ dom ∪ ran ℎ ) |
| 245 | 244 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → 𝑚 ∈ dom ∪ ran ℎ ) ) |
| 246 | 234 245 | impbid | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ dom ∪ ran ℎ ↔ 𝑚 ∈ ω ) ) |
| 247 | 246 | eqrdv | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → dom ∪ ran ℎ = ω ) |
| 248 | rnuni | ⊢ ran ∪ ran ℎ = ∪ 𝑠 ∈ ran ℎ ran 𝑠 | |
| 249 | frn | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → ran 𝑠 ⊆ 𝐴 ) | |
| 250 | 249 | 3ad2ant1 | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ran 𝑠 ⊆ 𝐴 ) |
| 251 | 250 | rexlimivw | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ran 𝑠 ⊆ 𝐴 ) |
| 252 | 251 | ss2abi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } |
| 253 | 2 252 | eqsstri | ⊢ 𝑆 ⊆ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } |
| 254 | 133 253 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ℎ ⊆ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } ) |
| 255 | ssel | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } → ( 𝑠 ∈ ran ℎ → 𝑠 ∈ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } ) ) | |
| 256 | abid | ⊢ ( 𝑠 ∈ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } ↔ ran 𝑠 ⊆ 𝐴 ) | |
| 257 | 255 256 | imbitrdi | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ran 𝑠 ⊆ 𝐴 } → ( 𝑠 ∈ ran ℎ → ran 𝑠 ⊆ 𝐴 ) ) |
| 258 | 254 257 | syl | ⊢ ( ℎ : ω ⟶ 𝑆 → ( 𝑠 ∈ ran ℎ → ran 𝑠 ⊆ 𝐴 ) ) |
| 259 | 258 | ralrimiv | ⊢ ( ℎ : ω ⟶ 𝑆 → ∀ 𝑠 ∈ ran ℎ ran 𝑠 ⊆ 𝐴 ) |
| 260 | iunss | ⊢ ( ∪ 𝑠 ∈ ran ℎ ran 𝑠 ⊆ 𝐴 ↔ ∀ 𝑠 ∈ ran ℎ ran 𝑠 ⊆ 𝐴 ) | |
| 261 | 259 260 | sylibr | ⊢ ( ℎ : ω ⟶ 𝑆 → ∪ 𝑠 ∈ ran ℎ ran 𝑠 ⊆ 𝐴 ) |
| 262 | 248 261 | eqsstrid | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ∪ ran ℎ ⊆ 𝐴 ) |
| 263 | 262 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ran ∪ ran ℎ ⊆ 𝐴 ) |
| 264 | df-fn | ⊢ ( ∪ ran ℎ Fn ω ↔ ( Fun ∪ ran ℎ ∧ dom ∪ ran ℎ = ω ) ) | |
| 265 | df-f | ⊢ ( ∪ ran ℎ : ω ⟶ 𝐴 ↔ ( ∪ ran ℎ Fn ω ∧ ran ∪ ran ℎ ⊆ 𝐴 ) ) | |
| 266 | 265 | biimpri | ⊢ ( ( ∪ ran ℎ Fn ω ∧ ran ∪ ran ℎ ⊆ 𝐴 ) → ∪ ran ℎ : ω ⟶ 𝐴 ) |
| 267 | 264 266 | sylanbr | ⊢ ( ( ( Fun ∪ ran ℎ ∧ dom ∪ ran ℎ = ω ) ∧ ran ∪ ran ℎ ⊆ 𝐴 ) → ∪ ran ℎ : ω ⟶ 𝐴 ) |
| 268 | 209 247 263 267 | syl21anc | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∪ ran ℎ : ω ⟶ 𝐴 ) |
| 269 | fnfvelrn | ⊢ ( ( ℎ Fn ω ∧ ∅ ∈ ω ) → ( ℎ ‘ ∅ ) ∈ ran ℎ ) | |
| 270 | 146 28 269 | sylancl | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ℎ ‘ ∅ ) ∈ ran ℎ ) |
| 271 | 270 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ℎ ‘ ∅ ) ∈ ran ℎ ) |
| 272 | elssuni | ⊢ ( ( ℎ ‘ ∅ ) ∈ ran ℎ → ( ℎ ‘ ∅ ) ⊆ ∪ ran ℎ ) | |
| 273 | 271 272 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ℎ ‘ ∅ ) ⊆ ∪ ran ℎ ) |
| 274 | 56 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∅ ∈ dom ( ℎ ‘ ∅ ) ) |
| 275 | funssfv | ⊢ ( ( Fun ∪ ran ℎ ∧ ( ℎ ‘ ∅ ) ⊆ ∪ ran ℎ ∧ ∅ ∈ dom ( ℎ ‘ ∅ ) ) → ( ∪ ran ℎ ‘ ∅ ) = ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) | |
| 276 | 209 273 274 275 | syl3anc | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ∪ ran ℎ ‘ ∅ ) = ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) |
| 277 | simp2 | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( 𝑠 ‘ ∅ ) = 𝐶 ) | |
| 278 | 277 | rexlimivw | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( 𝑠 ‘ ∅ ) = 𝐶 ) |
| 279 | 278 | ss2abi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } |
| 280 | 2 279 | eqsstri | ⊢ 𝑆 ⊆ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } |
| 281 | 133 280 | sstrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ran ℎ ⊆ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } ) |
| 282 | ssel | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } → ( ( ℎ ‘ ∅ ) ∈ ran ℎ → ( ℎ ‘ ∅ ) ∈ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } ) ) | |
| 283 | fveq1 | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → ( 𝑠 ‘ ∅ ) = ( ( ℎ ‘ ∅ ) ‘ ∅ ) ) | |
| 284 | 283 | eqeq1d | ⊢ ( 𝑠 = ( ℎ ‘ ∅ ) → ( ( 𝑠 ‘ ∅ ) = 𝐶 ↔ ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) ) |
| 285 | 48 284 | elab | ⊢ ( ( ℎ ‘ ∅ ) ∈ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } ↔ ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) |
| 286 | 282 285 | imbitrdi | ⊢ ( ran ℎ ⊆ { 𝑠 ∣ ( 𝑠 ‘ ∅ ) = 𝐶 } → ( ( ℎ ‘ ∅ ) ∈ ran ℎ → ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) ) |
| 287 | 281 286 | syl | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ( ℎ ‘ ∅ ) ∈ ran ℎ → ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) ) |
| 288 | 287 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( ℎ ‘ ∅ ) ∈ ran ℎ → ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) ) |
| 289 | 271 288 | mpd | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ( ℎ ‘ ∅ ) ‘ ∅ ) = 𝐶 ) |
| 290 | 276 289 | eqtrd | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( ∪ ran ℎ ‘ ∅ ) = 𝐶 ) |
| 291 | nfv | ⊢ Ⅎ 𝑘 ℎ : ω ⟶ 𝑆 | |
| 292 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) | |
| 293 | 291 292 | nfan | ⊢ Ⅎ 𝑘 ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) |
| 294 | 133 | ad2antrr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ran ℎ ⊆ 𝑆 ) |
| 295 | peano2 | ⊢ ( 𝑘 ∈ ω → suc 𝑘 ∈ ω ) | |
| 296 | fnfvelrn | ⊢ ( ( ℎ Fn ω ∧ suc 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ ) | |
| 297 | 146 295 296 | syl2an | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ ) |
| 298 | 297 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ ) |
| 299 | 239 | expcom | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ) ) |
| 300 | 299 | ralrimiv | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∀ 𝑚 ∈ ω 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ) |
| 301 | id | ⊢ ( 𝑚 = suc 𝑘 → 𝑚 = suc 𝑘 ) | |
| 302 | fveq2 | ⊢ ( 𝑚 = suc 𝑘 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ suc 𝑘 ) ) | |
| 303 | 302 | dmeqd | ⊢ ( 𝑚 = suc 𝑘 → dom ( ℎ ‘ 𝑚 ) = dom ( ℎ ‘ suc 𝑘 ) ) |
| 304 | 301 303 | eleq12d | ⊢ ( 𝑚 = suc 𝑘 → ( 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) ↔ suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 305 | 304 | rspcv | ⊢ ( suc 𝑘 ∈ ω → ( ∀ 𝑚 ∈ ω 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) → suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 306 | 295 305 | syl | ⊢ ( 𝑘 ∈ ω → ( ∀ 𝑚 ∈ ω 𝑚 ∈ dom ( ℎ ‘ 𝑚 ) → suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 307 | 300 306 | mpan9 | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) |
| 308 | eleq2 | ⊢ ( dom 𝑠 = suc 𝑛 → ( suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ suc 𝑛 ) ) | |
| 309 | 308 | biimpa | ⊢ ( ( dom 𝑠 = suc 𝑛 ∧ suc 𝑘 ∈ dom 𝑠 ) → suc 𝑘 ∈ suc 𝑛 ) |
| 310 | 31 309 | sylan | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ suc 𝑘 ∈ dom 𝑠 ) → suc 𝑘 ∈ suc 𝑛 ) |
| 311 | ordsucelsuc | ⊢ ( Ord 𝑛 → ( 𝑘 ∈ 𝑛 ↔ suc 𝑘 ∈ suc 𝑛 ) ) | |
| 312 | 32 311 | syl | ⊢ ( 𝑛 ∈ ω → ( 𝑘 ∈ 𝑛 ↔ suc 𝑘 ∈ suc 𝑛 ) ) |
| 313 | 312 | biimprd | ⊢ ( 𝑛 ∈ ω → ( suc 𝑘 ∈ suc 𝑛 → 𝑘 ∈ 𝑛 ) ) |
| 314 | rsp | ⊢ ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑛 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) | |
| 315 | 313 314 | syl9r | ⊢ ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑛 ∈ ω → ( suc 𝑘 ∈ suc 𝑛 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 316 | 315 | com13 | ⊢ ( suc 𝑘 ∈ suc 𝑛 → ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 317 | 310 316 | syl | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ suc 𝑘 ∈ dom 𝑠 ) → ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 318 | 317 | ex | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) ) |
| 319 | 318 | com24 | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) → ( 𝑛 ∈ ω → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) ) |
| 320 | 319 | imp | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( 𝑛 ∈ ω → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 321 | 320 | 3adant2 | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( 𝑛 ∈ ω → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 322 | 321 | impcom | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 323 | 322 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 324 | 323 | ss2abi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
| 325 | 2 324 | eqsstri | ⊢ 𝑆 ⊆ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
| 326 | sstr | ⊢ ( ( ran ℎ ⊆ 𝑆 ∧ 𝑆 ⊆ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) → ran ℎ ⊆ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) | |
| 327 | 325 326 | mpan2 | ⊢ ( ran ℎ ⊆ 𝑆 → ran ℎ ⊆ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) |
| 328 | 327 | sseld | ⊢ ( ran ℎ ⊆ 𝑆 → ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( ℎ ‘ suc 𝑘 ) ∈ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) ) |
| 329 | fvex | ⊢ ( ℎ ‘ suc 𝑘 ) ∈ V | |
| 330 | dmeq | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → dom 𝑠 = dom ( ℎ ‘ suc 𝑘 ) ) | |
| 331 | 330 | eleq2d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 332 | fveq1 | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( 𝑠 ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ) | |
| 333 | fveq1 | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( 𝑠 ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) | |
| 334 | 333 | fveq2d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) |
| 335 | 332 334 | eleq12d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) |
| 336 | 331 335 | imbi12d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) ) |
| 337 | 329 336 | elab | ⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ { 𝑠 ∣ ( suc 𝑘 ∈ dom 𝑠 → ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ↔ ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) |
| 338 | 328 337 | imbitrdi | ⊢ ( ran ℎ ⊆ 𝑆 → ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) ) |
| 339 | 294 298 307 338 | syl3c | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) |
| 340 | 209 | adantr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → Fun ∪ ran ℎ ) |
| 341 | elssuni | ⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( ℎ ‘ suc 𝑘 ) ⊆ ∪ ran ℎ ) | |
| 342 | 297 341 | syl | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ⊆ ∪ ran ℎ ) |
| 343 | 342 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ℎ ‘ suc 𝑘 ) ⊆ ∪ ran ℎ ) |
| 344 | funssfv | ⊢ ( ( Fun ∪ ran ℎ ∧ ( ℎ ‘ suc 𝑘 ) ⊆ ∪ ran ℎ ∧ suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) → ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ) | |
| 345 | 340 343 307 344 | syl3anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ) |
| 346 | 215 | sseld | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( ℎ ‘ suc 𝑘 ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ) ) |
| 347 | 330 | eleq2d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( ∅ ∈ dom 𝑠 ↔ ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 348 | 330 | eleq1d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( dom 𝑠 ∈ ω ↔ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) |
| 349 | 347 348 | anbi12d | ⊢ ( 𝑠 = ( ℎ ‘ suc 𝑘 ) → ( ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) ↔ ( ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ∧ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) ) |
| 350 | 329 349 | elab | ⊢ ( ( ℎ ‘ suc 𝑘 ) ∈ { 𝑠 ∣ ( ∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω ) } ↔ ( ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ∧ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) |
| 351 | 346 350 | imbitrdi | ⊢ ( ℎ : ω ⟶ 𝑆 → ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ∧ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) ) |
| 352 | 351 | adantr | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → ( ( ℎ ‘ suc 𝑘 ) ∈ ran ℎ → ( ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ∧ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) ) |
| 353 | 297 352 | mpd | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → ( ∅ ∈ dom ( ℎ ‘ suc 𝑘 ) ∧ dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) ) |
| 354 | 353 | simprd | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → dom ( ℎ ‘ suc 𝑘 ) ∈ ω ) |
| 355 | nnord | ⊢ ( dom ( ℎ ‘ suc 𝑘 ) ∈ ω → Ord dom ( ℎ ‘ suc 𝑘 ) ) | |
| 356 | ordtr | ⊢ ( Ord dom ( ℎ ‘ suc 𝑘 ) → Tr dom ( ℎ ‘ suc 𝑘 ) ) | |
| 357 | trsuc | ⊢ ( ( Tr dom ( ℎ ‘ suc 𝑘 ) ∧ suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) → 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) | |
| 358 | 357 | ex | ⊢ ( Tr dom ( ℎ ‘ suc 𝑘 ) → ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 359 | 354 355 356 358 | 4syl | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ 𝑘 ∈ ω ) → ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 360 | 359 | adantlr | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( suc 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) → 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) ) |
| 361 | 307 360 | mpd | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) |
| 362 | funssfv | ⊢ ( ( Fun ∪ ran ℎ ∧ ( ℎ ‘ suc 𝑘 ) ⊆ ∪ ran ℎ ∧ 𝑘 ∈ dom ( ℎ ‘ suc 𝑘 ) ) → ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) | |
| 363 | 340 343 361 362 | syl3anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) |
| 364 | simpl | ⊢ ( ( ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∧ ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) → ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ) | |
| 365 | simpr | ⊢ ( ( ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∧ ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) → ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) | |
| 366 | 365 | fveq2d | ⊢ ( ( ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∧ ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) → ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) |
| 367 | 364 366 | eleq12d | ⊢ ( ( ( ∪ ran ℎ ‘ suc 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∧ ( ∪ ran ℎ ‘ 𝑘 ) = ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) → ( ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ↔ ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) |
| 368 | 345 363 367 | syl2anc | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ↔ ( ( ℎ ‘ suc 𝑘 ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( ℎ ‘ suc 𝑘 ) ‘ 𝑘 ) ) ) ) |
| 369 | 339 368 | mpbird | ⊢ ( ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ∧ 𝑘 ∈ ω ) → ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) |
| 370 | 369 | ex | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ω → ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) ) |
| 371 | 293 370 | ralrimi | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ω ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) |
| 372 | vex | ⊢ ℎ ∈ V | |
| 373 | 372 | rnex | ⊢ ran ℎ ∈ V |
| 374 | 373 | uniex | ⊢ ∪ ran ℎ ∈ V |
| 375 | feq1 | ⊢ ( 𝑔 = ∪ ran ℎ → ( 𝑔 : ω ⟶ 𝐴 ↔ ∪ ran ℎ : ω ⟶ 𝐴 ) ) | |
| 376 | fveq1 | ⊢ ( 𝑔 = ∪ ran ℎ → ( 𝑔 ‘ ∅ ) = ( ∪ ran ℎ ‘ ∅ ) ) | |
| 377 | 376 | eqeq1d | ⊢ ( 𝑔 = ∪ ran ℎ → ( ( 𝑔 ‘ ∅ ) = 𝐶 ↔ ( ∪ ran ℎ ‘ ∅ ) = 𝐶 ) ) |
| 378 | fveq1 | ⊢ ( 𝑔 = ∪ ran ℎ → ( 𝑔 ‘ suc 𝑘 ) = ( ∪ ran ℎ ‘ suc 𝑘 ) ) | |
| 379 | fveq1 | ⊢ ( 𝑔 = ∪ ran ℎ → ( 𝑔 ‘ 𝑘 ) = ( ∪ ran ℎ ‘ 𝑘 ) ) | |
| 380 | 379 | fveq2d | ⊢ ( 𝑔 = ∪ ran ℎ → ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) |
| 381 | 378 380 | eleq12d | ⊢ ( 𝑔 = ∪ ran ℎ → ( ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) ) |
| 382 | 381 | ralbidv | ⊢ ( 𝑔 = ∪ ran ℎ → ( ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ω ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) ) |
| 383 | 375 377 382 | 3anbi123d | ⊢ ( 𝑔 = ∪ ran ℎ → ( ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( ∪ ran ℎ : ω ⟶ 𝐴 ∧ ( ∪ ran ℎ ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) ) ) |
| 384 | 374 383 | spcev | ⊢ ( ( ∪ ran ℎ : ω ⟶ 𝐴 ∧ ( ∪ ran ℎ ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( ∪ ran ℎ ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ∪ ran ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 385 | 268 290 371 384 | syl3anc | ⊢ ( ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 386 | 385 | exlimiv | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |