This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence h , we can construct the sequence g that we are after. (Contributed by Mario Carneiro, 30-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem2.1 | |- A e. _V |
|
| axdc3lem2.2 | |- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
||
| axdc3lem2.3 | |- G = ( x e. S |-> { y e. S | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } ) |
||
| Assertion | axdc3lem2 | |- ( E. h ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem2.1 | |- A e. _V |
|
| 2 | axdc3lem2.2 | |- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
|
| 3 | axdc3lem2.3 | |- G = ( x e. S |-> { y e. S | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } ) |
|
| 4 | id | |- ( m = (/) -> m = (/) ) |
|
| 5 | fveq2 | |- ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) |
|
| 6 | 5 | dmeqd | |- ( m = (/) -> dom ( h ` m ) = dom ( h ` (/) ) ) |
| 7 | 4 6 | eleq12d | |- ( m = (/) -> ( m e. dom ( h ` m ) <-> (/) e. dom ( h ` (/) ) ) ) |
| 8 | eleq2 | |- ( m = (/) -> ( j e. m <-> j e. (/) ) ) |
|
| 9 | 5 | sseq2d | |- ( m = (/) -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` (/) ) ) ) |
| 10 | 8 9 | imbi12d | |- ( m = (/) -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) |
| 11 | 7 10 | anbi12d | |- ( m = (/) -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) ) |
| 12 | id | |- ( m = i -> m = i ) |
|
| 13 | fveq2 | |- ( m = i -> ( h ` m ) = ( h ` i ) ) |
|
| 14 | 13 | dmeqd | |- ( m = i -> dom ( h ` m ) = dom ( h ` i ) ) |
| 15 | 12 14 | eleq12d | |- ( m = i -> ( m e. dom ( h ` m ) <-> i e. dom ( h ` i ) ) ) |
| 16 | elequ2 | |- ( m = i -> ( j e. m <-> j e. i ) ) |
|
| 17 | 13 | sseq2d | |- ( m = i -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` i ) ) ) |
| 18 | 16 17 | imbi12d | |- ( m = i -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) ) |
| 19 | 15 18 | anbi12d | |- ( m = i -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) ) ) |
| 20 | id | |- ( m = suc i -> m = suc i ) |
|
| 21 | fveq2 | |- ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) |
|
| 22 | 21 | dmeqd | |- ( m = suc i -> dom ( h ` m ) = dom ( h ` suc i ) ) |
| 23 | 20 22 | eleq12d | |- ( m = suc i -> ( m e. dom ( h ` m ) <-> suc i e. dom ( h ` suc i ) ) ) |
| 24 | eleq2 | |- ( m = suc i -> ( j e. m <-> j e. suc i ) ) |
|
| 25 | 21 | sseq2d | |- ( m = suc i -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` suc i ) ) ) |
| 26 | 24 25 | imbi12d | |- ( m = suc i -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 27 | 23 26 | anbi12d | |- ( m = suc i -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) |
| 28 | peano1 | |- (/) e. _om |
|
| 29 | ffvelcdm | |- ( ( h : _om --> S /\ (/) e. _om ) -> ( h ` (/) ) e. S ) |
|
| 30 | 28 29 | mpan2 | |- ( h : _om --> S -> ( h ` (/) ) e. S ) |
| 31 | fdm | |- ( s : suc n --> A -> dom s = suc n ) |
|
| 32 | nnord | |- ( n e. _om -> Ord n ) |
|
| 33 | 0elsuc | |- ( Ord n -> (/) e. suc n ) |
|
| 34 | 32 33 | syl | |- ( n e. _om -> (/) e. suc n ) |
| 35 | peano2 | |- ( n e. _om -> suc n e. _om ) |
|
| 36 | eleq2 | |- ( dom s = suc n -> ( (/) e. dom s <-> (/) e. suc n ) ) |
|
| 37 | eleq1 | |- ( dom s = suc n -> ( dom s e. _om <-> suc n e. _om ) ) |
|
| 38 | 36 37 | anbi12d | |- ( dom s = suc n -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. suc n /\ suc n e. _om ) ) ) |
| 39 | 38 | biimprcd | |- ( ( (/) e. suc n /\ suc n e. _om ) -> ( dom s = suc n -> ( (/) e. dom s /\ dom s e. _om ) ) ) |
| 40 | 34 35 39 | syl2anc | |- ( n e. _om -> ( dom s = suc n -> ( (/) e. dom s /\ dom s e. _om ) ) ) |
| 41 | 31 40 | syl5com | |- ( s : suc n --> A -> ( n e. _om -> ( (/) e. dom s /\ dom s e. _om ) ) ) |
| 42 | 41 | 3ad2ant1 | |- ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( (/) e. dom s /\ dom s e. _om ) ) ) |
| 43 | 42 | impcom | |- ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> ( (/) e. dom s /\ dom s e. _om ) ) |
| 44 | 43 | rexlimiva | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( (/) e. dom s /\ dom s e. _om ) ) |
| 45 | 44 | ss2abi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( (/) e. dom s /\ dom s e. _om ) } |
| 46 | 2 45 | eqsstri | |- S C_ { s | ( (/) e. dom s /\ dom s e. _om ) } |
| 47 | 46 | sseli | |- ( ( h ` (/) ) e. S -> ( h ` (/) ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) |
| 48 | fvex | |- ( h ` (/) ) e. _V |
|
| 49 | dmeq | |- ( s = ( h ` (/) ) -> dom s = dom ( h ` (/) ) ) |
|
| 50 | 49 | eleq2d | |- ( s = ( h ` (/) ) -> ( (/) e. dom s <-> (/) e. dom ( h ` (/) ) ) ) |
| 51 | 49 | eleq1d | |- ( s = ( h ` (/) ) -> ( dom s e. _om <-> dom ( h ` (/) ) e. _om ) ) |
| 52 | 50 51 | anbi12d | |- ( s = ( h ` (/) ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) ) |
| 53 | 48 52 | elab | |- ( ( h ` (/) ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) |
| 54 | 47 53 | sylib | |- ( ( h ` (/) ) e. S -> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) |
| 55 | 54 | simpld | |- ( ( h ` (/) ) e. S -> (/) e. dom ( h ` (/) ) ) |
| 56 | 30 55 | syl | |- ( h : _om --> S -> (/) e. dom ( h ` (/) ) ) |
| 57 | noel | |- -. j e. (/) |
|
| 58 | 57 | pm2.21i | |- ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) |
| 59 | 56 58 | jctir | |- ( h : _om --> S -> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) |
| 60 | 59 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) |
| 61 | ffvelcdm | |- ( ( h : _om --> S /\ i e. _om ) -> ( h ` i ) e. S ) |
|
| 62 | 61 | ancoms | |- ( ( i e. _om /\ h : _om --> S ) -> ( h ` i ) e. S ) |
| 63 | 62 | adantrr | |- ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` i ) e. S ) |
| 64 | suceq | |- ( k = i -> suc k = suc i ) |
|
| 65 | 64 | fveq2d | |- ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) |
| 66 | 2fveq3 | |- ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) |
|
| 67 | 65 66 | eleq12d | |- ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
| 68 | 67 | rspcva | |- ( ( i e. _om /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) |
| 69 | 68 | adantrl | |- ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) |
| 70 | 46 | sseli | |- ( ( h ` i ) e. S -> ( h ` i ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) |
| 71 | fvex | |- ( h ` i ) e. _V |
|
| 72 | dmeq | |- ( s = ( h ` i ) -> dom s = dom ( h ` i ) ) |
|
| 73 | 72 | eleq2d | |- ( s = ( h ` i ) -> ( (/) e. dom s <-> (/) e. dom ( h ` i ) ) ) |
| 74 | 72 | eleq1d | |- ( s = ( h ` i ) -> ( dom s e. _om <-> dom ( h ` i ) e. _om ) ) |
| 75 | 73 74 | anbi12d | |- ( s = ( h ` i ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) ) |
| 76 | 71 75 | elab | |- ( ( h ` i ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) |
| 77 | 70 76 | sylib | |- ( ( h ` i ) e. S -> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) |
| 78 | 77 | simprd | |- ( ( h ` i ) e. S -> dom ( h ` i ) e. _om ) |
| 79 | nnord | |- ( dom ( h ` i ) e. _om -> Ord dom ( h ` i ) ) |
|
| 80 | ordsucelsuc | |- ( Ord dom ( h ` i ) -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) |
|
| 81 | 78 79 80 | 3syl | |- ( ( h ` i ) e. S -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) |
| 82 | 81 | adantr | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) |
| 83 | dmeq | |- ( x = ( h ` i ) -> dom x = dom ( h ` i ) ) |
|
| 84 | suceq | |- ( dom x = dom ( h ` i ) -> suc dom x = suc dom ( h ` i ) ) |
|
| 85 | 83 84 | syl | |- ( x = ( h ` i ) -> suc dom x = suc dom ( h ` i ) ) |
| 86 | 85 | eqeq2d | |- ( x = ( h ` i ) -> ( dom y = suc dom x <-> dom y = suc dom ( h ` i ) ) ) |
| 87 | 83 | reseq2d | |- ( x = ( h ` i ) -> ( y |` dom x ) = ( y |` dom ( h ` i ) ) ) |
| 88 | id | |- ( x = ( h ` i ) -> x = ( h ` i ) ) |
|
| 89 | 87 88 | eqeq12d | |- ( x = ( h ` i ) -> ( ( y |` dom x ) = x <-> ( y |` dom ( h ` i ) ) = ( h ` i ) ) ) |
| 90 | 86 89 | anbi12d | |- ( x = ( h ` i ) -> ( ( dom y = suc dom x /\ ( y |` dom x ) = x ) <-> ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) ) ) |
| 91 | 90 | rabbidv | |- ( x = ( h ` i ) -> { y e. S | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } = { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) |
| 92 | 1 2 | axdc3lem | |- S e. _V |
| 93 | 92 | rabex | |- { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } e. _V |
| 94 | 91 3 93 | fvmpt | |- ( ( h ` i ) e. S -> ( G ` ( h ` i ) ) = { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) |
| 95 | 94 | eleq2d | |- ( ( h ` i ) e. S -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) ) |
| 96 | dmeq | |- ( y = ( h ` suc i ) -> dom y = dom ( h ` suc i ) ) |
|
| 97 | 96 | eqeq1d | |- ( y = ( h ` suc i ) -> ( dom y = suc dom ( h ` i ) <-> dom ( h ` suc i ) = suc dom ( h ` i ) ) ) |
| 98 | reseq1 | |- ( y = ( h ` suc i ) -> ( y |` dom ( h ` i ) ) = ( ( h ` suc i ) |` dom ( h ` i ) ) ) |
|
| 99 | 98 | eqeq1d | |- ( y = ( h ` suc i ) -> ( ( y |` dom ( h ` i ) ) = ( h ` i ) <-> ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) |
| 100 | 97 99 | anbi12d | |- ( y = ( h ` suc i ) -> ( ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) <-> ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) |
| 101 | 100 | elrab | |- ( ( h ` suc i ) e. { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } <-> ( ( h ` suc i ) e. S /\ ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) |
| 102 | 95 101 | bitrdi | |- ( ( h ` i ) e. S -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( ( h ` suc i ) e. S /\ ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) ) |
| 103 | 102 | simplbda | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) |
| 104 | 103 | simpld | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> dom ( h ` suc i ) = suc dom ( h ` i ) ) |
| 105 | 104 | eleq2d | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) <-> suc i e. suc dom ( h ` i ) ) ) |
| 106 | 82 105 | bitr4d | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) <-> suc i e. dom ( h ` suc i ) ) ) |
| 107 | 106 | biimpd | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) -> suc i e. dom ( h ` suc i ) ) ) |
| 108 | 103 | simprd | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) |
| 109 | resss | |- ( ( h ` suc i ) |` dom ( h ` i ) ) C_ ( h ` suc i ) |
|
| 110 | sseq1 | |- ( ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) -> ( ( ( h ` suc i ) |` dom ( h ` i ) ) C_ ( h ` suc i ) <-> ( h ` i ) C_ ( h ` suc i ) ) ) |
|
| 111 | 109 110 | mpbii | |- ( ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) -> ( h ` i ) C_ ( h ` suc i ) ) |
| 112 | elsuci | |- ( j e. suc i -> ( j e. i \/ j = i ) ) |
|
| 113 | pm2.27 | |- ( j e. i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( h ` j ) C_ ( h ` i ) ) ) |
|
| 114 | sstr2 | |- ( ( h ` j ) C_ ( h ` i ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) |
|
| 115 | 113 114 | syl6 | |- ( j e. i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 116 | fveq2 | |- ( j = i -> ( h ` j ) = ( h ` i ) ) |
|
| 117 | 116 | sseq1d | |- ( j = i -> ( ( h ` j ) C_ ( h ` suc i ) <-> ( h ` i ) C_ ( h ` suc i ) ) ) |
| 118 | 117 | biimprd | |- ( j = i -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) |
| 119 | 118 | a1d | |- ( j = i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 120 | 115 119 | jaoi | |- ( ( j e. i \/ j = i ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 121 | 112 120 | syl | |- ( j e. suc i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 122 | 121 | com13 | |- ( ( h ` i ) C_ ( h ` suc i ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 123 | 108 111 122 | 3syl | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) |
| 124 | 107 123 | anim12d | |- ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) |
| 125 | 63 69 124 | syl2anc | |- ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) |
| 126 | 125 | ex | |- ( i e. _om -> ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) ) |
| 127 | 11 19 27 60 126 | finds2 | |- ( m e. _om -> ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) ) |
| 128 | 127 | imp | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) |
| 129 | 128 | simprd | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) |
| 130 | 129 | expcom | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) |
| 131 | 130 | ralrimdv | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> A. j e. m ( h ` j ) C_ ( h ` m ) ) ) |
| 132 | 131 | ralrimiv | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) |
| 133 | frn | |- ( h : _om --> S -> ran h C_ S ) |
|
| 134 | ffun | |- ( s : suc n --> A -> Fun s ) |
|
| 135 | 134 | 3ad2ant1 | |- ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> Fun s ) |
| 136 | 135 | rexlimivw | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> Fun s ) |
| 137 | 136 | ss2abi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | Fun s } |
| 138 | 2 137 | eqsstri | |- S C_ { s | Fun s } |
| 139 | 133 138 | sstrdi | |- ( h : _om --> S -> ran h C_ { s | Fun s } ) |
| 140 | 139 | sseld | |- ( h : _om --> S -> ( u e. ran h -> u e. { s | Fun s } ) ) |
| 141 | vex | |- u e. _V |
|
| 142 | funeq | |- ( s = u -> ( Fun s <-> Fun u ) ) |
|
| 143 | 141 142 | elab | |- ( u e. { s | Fun s } <-> Fun u ) |
| 144 | 140 143 | imbitrdi | |- ( h : _om --> S -> ( u e. ran h -> Fun u ) ) |
| 145 | 144 | adantr | |- ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> Fun u ) ) |
| 146 | ffn | |- ( h : _om --> S -> h Fn _om ) |
|
| 147 | fvelrnb | |- ( h Fn _om -> ( v e. ran h <-> E. b e. _om ( h ` b ) = v ) ) |
|
| 148 | fvelrnb | |- ( h Fn _om -> ( u e. ran h <-> E. a e. _om ( h ` a ) = u ) ) |
|
| 149 | nnord | |- ( a e. _om -> Ord a ) |
|
| 150 | nnord | |- ( b e. _om -> Ord b ) |
|
| 151 | 149 150 | anim12i | |- ( ( a e. _om /\ b e. _om ) -> ( Ord a /\ Ord b ) ) |
| 152 | ordtri3or | |- ( ( Ord a /\ Ord b ) -> ( a e. b \/ a = b \/ b e. a ) ) |
|
| 153 | fveq2 | |- ( m = b -> ( h ` m ) = ( h ` b ) ) |
|
| 154 | 153 | sseq2d | |- ( m = b -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` b ) ) ) |
| 155 | 154 | raleqbi1dv | |- ( m = b -> ( A. j e. m ( h ` j ) C_ ( h ` m ) <-> A. j e. b ( h ` j ) C_ ( h ` b ) ) ) |
| 156 | 155 | rspcv | |- ( b e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> A. j e. b ( h ` j ) C_ ( h ` b ) ) ) |
| 157 | fveq2 | |- ( j = a -> ( h ` j ) = ( h ` a ) ) |
|
| 158 | 157 | sseq1d | |- ( j = a -> ( ( h ` j ) C_ ( h ` b ) <-> ( h ` a ) C_ ( h ` b ) ) ) |
| 159 | 158 | rspccv | |- ( A. j e. b ( h ` j ) C_ ( h ` b ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) |
| 160 | 156 159 | syl6 | |- ( b e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) ) |
| 161 | 160 | adantl | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) ) |
| 162 | 161 | 3imp | |- ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ a e. b ) -> ( h ` a ) C_ ( h ` b ) ) |
| 163 | 162 | orcd | |- ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ a e. b ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) |
| 164 | 163 | 3exp | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 165 | 164 | com3r | |- ( a e. b -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 166 | fveq2 | |- ( a = b -> ( h ` a ) = ( h ` b ) ) |
|
| 167 | eqimss | |- ( ( h ` a ) = ( h ` b ) -> ( h ` a ) C_ ( h ` b ) ) |
|
| 168 | 167 | orcd | |- ( ( h ` a ) = ( h ` b ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) |
| 169 | 166 168 | syl | |- ( a = b -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) |
| 170 | 169 | 2a1d | |- ( a = b -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 171 | fveq2 | |- ( m = a -> ( h ` m ) = ( h ` a ) ) |
|
| 172 | 171 | sseq2d | |- ( m = a -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` a ) ) ) |
| 173 | 172 | raleqbi1dv | |- ( m = a -> ( A. j e. m ( h ` j ) C_ ( h ` m ) <-> A. j e. a ( h ` j ) C_ ( h ` a ) ) ) |
| 174 | 173 | rspcv | |- ( a e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> A. j e. a ( h ` j ) C_ ( h ` a ) ) ) |
| 175 | fveq2 | |- ( j = b -> ( h ` j ) = ( h ` b ) ) |
|
| 176 | 175 | sseq1d | |- ( j = b -> ( ( h ` j ) C_ ( h ` a ) <-> ( h ` b ) C_ ( h ` a ) ) ) |
| 177 | 176 | rspccv | |- ( A. j e. a ( h ` j ) C_ ( h ` a ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) |
| 178 | 174 177 | syl6 | |- ( a e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) ) |
| 179 | 178 | adantr | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) ) |
| 180 | 179 | 3imp | |- ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ b e. a ) -> ( h ` b ) C_ ( h ` a ) ) |
| 181 | 180 | olcd | |- ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ b e. a ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) |
| 182 | 181 | 3exp | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 183 | 182 | com3r | |- ( b e. a -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 184 | 165 170 183 | 3jaoi | |- ( ( a e. b \/ a = b \/ b e. a ) -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 185 | 152 184 | syl | |- ( ( Ord a /\ Ord b ) -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) |
| 186 | 151 185 | mpcom | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) |
| 187 | sseq12 | |- ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( h ` a ) C_ ( h ` b ) <-> u C_ v ) ) |
|
| 188 | sseq12 | |- ( ( ( h ` b ) = v /\ ( h ` a ) = u ) -> ( ( h ` b ) C_ ( h ` a ) <-> v C_ u ) ) |
|
| 189 | 188 | ancoms | |- ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( h ` b ) C_ ( h ` a ) <-> v C_ u ) ) |
| 190 | 187 189 | orbi12d | |- ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) <-> ( u C_ v \/ v C_ u ) ) ) |
| 191 | 190 | biimpcd | |- ( ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( u C_ v \/ v C_ u ) ) ) |
| 192 | 186 191 | syl6 | |- ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( u C_ v \/ v C_ u ) ) ) ) |
| 193 | 192 | com23 | |- ( ( a e. _om /\ b e. _om ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) |
| 194 | 193 | exp4b | |- ( a e. _om -> ( b e. _om -> ( ( h ` a ) = u -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) ) |
| 195 | 194 | com23 | |- ( a e. _om -> ( ( h ` a ) = u -> ( b e. _om -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) ) |
| 196 | 195 | rexlimiv | |- ( E. a e. _om ( h ` a ) = u -> ( b e. _om -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) |
| 197 | 196 | rexlimdv | |- ( E. a e. _om ( h ` a ) = u -> ( E. b e. _om ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) |
| 198 | 148 197 | biimtrdi | |- ( h Fn _om -> ( u e. ran h -> ( E. b e. _om ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) |
| 199 | 198 | com23 | |- ( h Fn _om -> ( E. b e. _om ( h ` b ) = v -> ( u e. ran h -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) |
| 200 | 147 199 | sylbid | |- ( h Fn _om -> ( v e. ran h -> ( u e. ran h -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) |
| 201 | 200 | com24 | |- ( h Fn _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u e. ran h -> ( v e. ran h -> ( u C_ v \/ v C_ u ) ) ) ) ) |
| 202 | 201 | imp | |- ( ( h Fn _om /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> ( v e. ran h -> ( u C_ v \/ v C_ u ) ) ) ) |
| 203 | 202 | ralrimdv | |- ( ( h Fn _om /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> A. v e. ran h ( u C_ v \/ v C_ u ) ) ) |
| 204 | 146 203 | sylan | |- ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> A. v e. ran h ( u C_ v \/ v C_ u ) ) ) |
| 205 | 145 204 | jcad | |- ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) ) ) |
| 206 | 205 | ralrimiv | |- ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> A. u e. ran h ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) ) |
| 207 | fununi | |- ( A. u e. ran h ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) -> Fun U. ran h ) |
|
| 208 | 206 207 | syl | |- ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> Fun U. ran h ) |
| 209 | 132 208 | syldan | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> Fun U. ran h ) |
| 210 | vex | |- m e. _V |
|
| 211 | 210 | eldm2 | |- ( m e. dom U. ran h <-> E. u <. m , u >. e. U. ran h ) |
| 212 | eluni2 | |- ( <. m , u >. e. U. ran h <-> E. v e. ran h <. m , u >. e. v ) |
|
| 213 | 210 141 | opeldm | |- ( <. m , u >. e. v -> m e. dom v ) |
| 214 | 213 | a1i | |- ( h : _om --> S -> ( <. m , u >. e. v -> m e. dom v ) ) |
| 215 | 133 46 | sstrdi | |- ( h : _om --> S -> ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } ) |
| 216 | ssel | |- ( ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } -> ( v e. ran h -> v e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) ) |
|
| 217 | vex | |- v e. _V |
|
| 218 | dmeq | |- ( s = v -> dom s = dom v ) |
|
| 219 | 218 | eleq2d | |- ( s = v -> ( (/) e. dom s <-> (/) e. dom v ) ) |
| 220 | 218 | eleq1d | |- ( s = v -> ( dom s e. _om <-> dom v e. _om ) ) |
| 221 | 219 220 | anbi12d | |- ( s = v -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom v /\ dom v e. _om ) ) ) |
| 222 | 217 221 | elab | |- ( v e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom v /\ dom v e. _om ) ) |
| 223 | 222 | simprbi | |- ( v e. { s | ( (/) e. dom s /\ dom s e. _om ) } -> dom v e. _om ) |
| 224 | 216 223 | syl6 | |- ( ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } -> ( v e. ran h -> dom v e. _om ) ) |
| 225 | 215 224 | syl | |- ( h : _om --> S -> ( v e. ran h -> dom v e. _om ) ) |
| 226 | 214 225 | anim12d | |- ( h : _om --> S -> ( ( <. m , u >. e. v /\ v e. ran h ) -> ( m e. dom v /\ dom v e. _om ) ) ) |
| 227 | elnn | |- ( ( m e. dom v /\ dom v e. _om ) -> m e. _om ) |
|
| 228 | 226 227 | syl6 | |- ( h : _om --> S -> ( ( <. m , u >. e. v /\ v e. ran h ) -> m e. _om ) ) |
| 229 | 228 | expcomd | |- ( h : _om --> S -> ( v e. ran h -> ( <. m , u >. e. v -> m e. _om ) ) ) |
| 230 | 229 | rexlimdv | |- ( h : _om --> S -> ( E. v e. ran h <. m , u >. e. v -> m e. _om ) ) |
| 231 | 212 230 | biimtrid | |- ( h : _om --> S -> ( <. m , u >. e. U. ran h -> m e. _om ) ) |
| 232 | 231 | exlimdv | |- ( h : _om --> S -> ( E. u <. m , u >. e. U. ran h -> m e. _om ) ) |
| 233 | 211 232 | biimtrid | |- ( h : _om --> S -> ( m e. dom U. ran h -> m e. _om ) ) |
| 234 | 233 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom U. ran h -> m e. _om ) ) |
| 235 | id | |- ( m e. _om -> m e. _om ) |
|
| 236 | fnfvelrn | |- ( ( h Fn _om /\ m e. _om ) -> ( h ` m ) e. ran h ) |
|
| 237 | 146 235 236 | syl2anr | |- ( ( m e. _om /\ h : _om --> S ) -> ( h ` m ) e. ran h ) |
| 238 | 237 | adantrr | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` m ) e. ran h ) |
| 239 | 128 | simpld | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. dom ( h ` m ) ) |
| 240 | dmeq | |- ( u = ( h ` m ) -> dom u = dom ( h ` m ) ) |
|
| 241 | 240 | eliuni | |- ( ( ( h ` m ) e. ran h /\ m e. dom ( h ` m ) ) -> m e. U_ u e. ran h dom u ) |
| 242 | 238 239 241 | syl2anc | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. U_ u e. ran h dom u ) |
| 243 | dmuni | |- dom U. ran h = U_ u e. ran h dom u |
|
| 244 | 242 243 | eleqtrrdi | |- ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. dom U. ran h ) |
| 245 | 244 | expcom | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> m e. dom U. ran h ) ) |
| 246 | 234 245 | impbid | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom U. ran h <-> m e. _om ) ) |
| 247 | 246 | eqrdv | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> dom U. ran h = _om ) |
| 248 | rnuni | |- ran U. ran h = U_ s e. ran h ran s |
|
| 249 | frn | |- ( s : suc n --> A -> ran s C_ A ) |
|
| 250 | 249 | 3ad2ant1 | |- ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ran s C_ A ) |
| 251 | 250 | rexlimivw | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ran s C_ A ) |
| 252 | 251 | ss2abi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ran s C_ A } |
| 253 | 2 252 | eqsstri | |- S C_ { s | ran s C_ A } |
| 254 | 133 253 | sstrdi | |- ( h : _om --> S -> ran h C_ { s | ran s C_ A } ) |
| 255 | ssel | |- ( ran h C_ { s | ran s C_ A } -> ( s e. ran h -> s e. { s | ran s C_ A } ) ) |
|
| 256 | abid | |- ( s e. { s | ran s C_ A } <-> ran s C_ A ) |
|
| 257 | 255 256 | imbitrdi | |- ( ran h C_ { s | ran s C_ A } -> ( s e. ran h -> ran s C_ A ) ) |
| 258 | 254 257 | syl | |- ( h : _om --> S -> ( s e. ran h -> ran s C_ A ) ) |
| 259 | 258 | ralrimiv | |- ( h : _om --> S -> A. s e. ran h ran s C_ A ) |
| 260 | iunss | |- ( U_ s e. ran h ran s C_ A <-> A. s e. ran h ran s C_ A ) |
|
| 261 | 259 260 | sylibr | |- ( h : _om --> S -> U_ s e. ran h ran s C_ A ) |
| 262 | 248 261 | eqsstrid | |- ( h : _om --> S -> ran U. ran h C_ A ) |
| 263 | 262 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ran U. ran h C_ A ) |
| 264 | df-fn | |- ( U. ran h Fn _om <-> ( Fun U. ran h /\ dom U. ran h = _om ) ) |
|
| 265 | df-f | |- ( U. ran h : _om --> A <-> ( U. ran h Fn _om /\ ran U. ran h C_ A ) ) |
|
| 266 | 265 | biimpri | |- ( ( U. ran h Fn _om /\ ran U. ran h C_ A ) -> U. ran h : _om --> A ) |
| 267 | 264 266 | sylanbr | |- ( ( ( Fun U. ran h /\ dom U. ran h = _om ) /\ ran U. ran h C_ A ) -> U. ran h : _om --> A ) |
| 268 | 209 247 263 267 | syl21anc | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> U. ran h : _om --> A ) |
| 269 | fnfvelrn | |- ( ( h Fn _om /\ (/) e. _om ) -> ( h ` (/) ) e. ran h ) |
|
| 270 | 146 28 269 | sylancl | |- ( h : _om --> S -> ( h ` (/) ) e. ran h ) |
| 271 | 270 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` (/) ) e. ran h ) |
| 272 | elssuni | |- ( ( h ` (/) ) e. ran h -> ( h ` (/) ) C_ U. ran h ) |
|
| 273 | 271 272 | syl | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` (/) ) C_ U. ran h ) |
| 274 | 56 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> (/) e. dom ( h ` (/) ) ) |
| 275 | funssfv | |- ( ( Fun U. ran h /\ ( h ` (/) ) C_ U. ran h /\ (/) e. dom ( h ` (/) ) ) -> ( U. ran h ` (/) ) = ( ( h ` (/) ) ` (/) ) ) |
|
| 276 | 209 273 274 275 | syl3anc | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( U. ran h ` (/) ) = ( ( h ` (/) ) ` (/) ) ) |
| 277 | simp2 | |- ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( s ` (/) ) = C ) |
|
| 278 | 277 | rexlimivw | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( s ` (/) ) = C ) |
| 279 | 278 | ss2abi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( s ` (/) ) = C } |
| 280 | 2 279 | eqsstri | |- S C_ { s | ( s ` (/) ) = C } |
| 281 | 133 280 | sstrdi | |- ( h : _om --> S -> ran h C_ { s | ( s ` (/) ) = C } ) |
| 282 | ssel | |- ( ran h C_ { s | ( s ` (/) ) = C } -> ( ( h ` (/) ) e. ran h -> ( h ` (/) ) e. { s | ( s ` (/) ) = C } ) ) |
|
| 283 | fveq1 | |- ( s = ( h ` (/) ) -> ( s ` (/) ) = ( ( h ` (/) ) ` (/) ) ) |
|
| 284 | 283 | eqeq1d | |- ( s = ( h ` (/) ) -> ( ( s ` (/) ) = C <-> ( ( h ` (/) ) ` (/) ) = C ) ) |
| 285 | 48 284 | elab | |- ( ( h ` (/) ) e. { s | ( s ` (/) ) = C } <-> ( ( h ` (/) ) ` (/) ) = C ) |
| 286 | 282 285 | imbitrdi | |- ( ran h C_ { s | ( s ` (/) ) = C } -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) |
| 287 | 281 286 | syl | |- ( h : _om --> S -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) |
| 288 | 287 | adantr | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) |
| 289 | 271 288 | mpd | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( h ` (/) ) ` (/) ) = C ) |
| 290 | 276 289 | eqtrd | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( U. ran h ` (/) ) = C ) |
| 291 | nfv | |- F/ k h : _om --> S |
|
| 292 | nfra1 | |- F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) |
|
| 293 | 291 292 | nfan | |- F/ k ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
| 294 | 133 | ad2antrr | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ran h C_ S ) |
| 295 | peano2 | |- ( k e. _om -> suc k e. _om ) |
|
| 296 | fnfvelrn | |- ( ( h Fn _om /\ suc k e. _om ) -> ( h ` suc k ) e. ran h ) |
|
| 297 | 146 295 296 | syl2an | |- ( ( h : _om --> S /\ k e. _om ) -> ( h ` suc k ) e. ran h ) |
| 298 | 297 | adantlr | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ran h ) |
| 299 | 239 | expcom | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> m e. dom ( h ` m ) ) ) |
| 300 | 299 | ralrimiv | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. m e. _om m e. dom ( h ` m ) ) |
| 301 | id | |- ( m = suc k -> m = suc k ) |
|
| 302 | fveq2 | |- ( m = suc k -> ( h ` m ) = ( h ` suc k ) ) |
|
| 303 | 302 | dmeqd | |- ( m = suc k -> dom ( h ` m ) = dom ( h ` suc k ) ) |
| 304 | 301 303 | eleq12d | |- ( m = suc k -> ( m e. dom ( h ` m ) <-> suc k e. dom ( h ` suc k ) ) ) |
| 305 | 304 | rspcv | |- ( suc k e. _om -> ( A. m e. _om m e. dom ( h ` m ) -> suc k e. dom ( h ` suc k ) ) ) |
| 306 | 295 305 | syl | |- ( k e. _om -> ( A. m e. _om m e. dom ( h ` m ) -> suc k e. dom ( h ` suc k ) ) ) |
| 307 | 300 306 | mpan9 | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> suc k e. dom ( h ` suc k ) ) |
| 308 | eleq2 | |- ( dom s = suc n -> ( suc k e. dom s <-> suc k e. suc n ) ) |
|
| 309 | 308 | biimpa | |- ( ( dom s = suc n /\ suc k e. dom s ) -> suc k e. suc n ) |
| 310 | 31 309 | sylan | |- ( ( s : suc n --> A /\ suc k e. dom s ) -> suc k e. suc n ) |
| 311 | ordsucelsuc | |- ( Ord n -> ( k e. n <-> suc k e. suc n ) ) |
|
| 312 | 32 311 | syl | |- ( n e. _om -> ( k e. n <-> suc k e. suc n ) ) |
| 313 | 312 | biimprd | |- ( n e. _om -> ( suc k e. suc n -> k e. n ) ) |
| 314 | rsp | |- ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( k e. n -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) |
|
| 315 | 313 314 | syl9r | |- ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( n e. _om -> ( suc k e. suc n -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 316 | 315 | com13 | |- ( suc k e. suc n -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 317 | 310 316 | syl | |- ( ( s : suc n --> A /\ suc k e. dom s ) -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 318 | 317 | ex | |- ( s : suc n --> A -> ( suc k e. dom s -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) ) |
| 319 | 318 | com24 | |- ( s : suc n --> A -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) ) |
| 320 | 319 | imp | |- ( ( s : suc n --> A /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 321 | 320 | 3adant2 | |- ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 322 | 321 | impcom | |- ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) |
| 323 | 322 | rexlimiva | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) |
| 324 | 323 | ss2abi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
| 325 | 2 324 | eqsstri | |- S C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
| 326 | sstr | |- ( ( ran h C_ S /\ S C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) -> ran h C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) |
|
| 327 | 325 326 | mpan2 | |- ( ran h C_ S -> ran h C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) |
| 328 | 327 | sseld | |- ( ran h C_ S -> ( ( h ` suc k ) e. ran h -> ( h ` suc k ) e. { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) ) |
| 329 | fvex | |- ( h ` suc k ) e. _V |
|
| 330 | dmeq | |- ( s = ( h ` suc k ) -> dom s = dom ( h ` suc k ) ) |
|
| 331 | 330 | eleq2d | |- ( s = ( h ` suc k ) -> ( suc k e. dom s <-> suc k e. dom ( h ` suc k ) ) ) |
| 332 | fveq1 | |- ( s = ( h ` suc k ) -> ( s ` suc k ) = ( ( h ` suc k ) ` suc k ) ) |
|
| 333 | fveq1 | |- ( s = ( h ` suc k ) -> ( s ` k ) = ( ( h ` suc k ) ` k ) ) |
|
| 334 | 333 | fveq2d | |- ( s = ( h ` suc k ) -> ( F ` ( s ` k ) ) = ( F ` ( ( h ` suc k ) ` k ) ) ) |
| 335 | 332 334 | eleq12d | |- ( s = ( h ` suc k ) -> ( ( s ` suc k ) e. ( F ` ( s ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) |
| 336 | 331 335 | imbi12d | |- ( s = ( h ` suc k ) -> ( ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) <-> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) ) |
| 337 | 329 336 | elab | |- ( ( h ` suc k ) e. { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } <-> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) |
| 338 | 328 337 | imbitrdi | |- ( ran h C_ S -> ( ( h ` suc k ) e. ran h -> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) ) |
| 339 | 294 298 307 338 | syl3c | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) |
| 340 | 209 | adantr | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> Fun U. ran h ) |
| 341 | elssuni | |- ( ( h ` suc k ) e. ran h -> ( h ` suc k ) C_ U. ran h ) |
|
| 342 | 297 341 | syl | |- ( ( h : _om --> S /\ k e. _om ) -> ( h ` suc k ) C_ U. ran h ) |
| 343 | 342 | adantlr | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) C_ U. ran h ) |
| 344 | funssfv | |- ( ( Fun U. ran h /\ ( h ` suc k ) C_ U. ran h /\ suc k e. dom ( h ` suc k ) ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) |
|
| 345 | 340 343 307 344 | syl3anc | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) |
| 346 | 215 | sseld | |- ( h : _om --> S -> ( ( h ` suc k ) e. ran h -> ( h ` suc k ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) ) |
| 347 | 330 | eleq2d | |- ( s = ( h ` suc k ) -> ( (/) e. dom s <-> (/) e. dom ( h ` suc k ) ) ) |
| 348 | 330 | eleq1d | |- ( s = ( h ` suc k ) -> ( dom s e. _om <-> dom ( h ` suc k ) e. _om ) ) |
| 349 | 347 348 | anbi12d | |- ( s = ( h ` suc k ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) |
| 350 | 329 349 | elab | |- ( ( h ` suc k ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) |
| 351 | 346 350 | imbitrdi | |- ( h : _om --> S -> ( ( h ` suc k ) e. ran h -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) |
| 352 | 351 | adantr | |- ( ( h : _om --> S /\ k e. _om ) -> ( ( h ` suc k ) e. ran h -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) |
| 353 | 297 352 | mpd | |- ( ( h : _om --> S /\ k e. _om ) -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) |
| 354 | 353 | simprd | |- ( ( h : _om --> S /\ k e. _om ) -> dom ( h ` suc k ) e. _om ) |
| 355 | nnord | |- ( dom ( h ` suc k ) e. _om -> Ord dom ( h ` suc k ) ) |
|
| 356 | ordtr | |- ( Ord dom ( h ` suc k ) -> Tr dom ( h ` suc k ) ) |
|
| 357 | trsuc | |- ( ( Tr dom ( h ` suc k ) /\ suc k e. dom ( h ` suc k ) ) -> k e. dom ( h ` suc k ) ) |
|
| 358 | 357 | ex | |- ( Tr dom ( h ` suc k ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) |
| 359 | 354 355 356 358 | 4syl | |- ( ( h : _om --> S /\ k e. _om ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) |
| 360 | 359 | adantlr | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) |
| 361 | 307 360 | mpd | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. dom ( h ` suc k ) ) |
| 362 | funssfv | |- ( ( Fun U. ran h /\ ( h ` suc k ) C_ U. ran h /\ k e. dom ( h ` suc k ) ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) |
|
| 363 | 340 343 361 362 | syl3anc | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) |
| 364 | simpl | |- ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) |
|
| 365 | simpr | |- ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) |
|
| 366 | 365 | fveq2d | |- ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( F ` ( U. ran h ` k ) ) = ( F ` ( ( h ` suc k ) ` k ) ) ) |
| 367 | 364 366 | eleq12d | |- ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) |
| 368 | 345 363 367 | syl2anc | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) |
| 369 | 339 368 | mpbird | |- ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) |
| 370 | 369 | ex | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( k e. _om -> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) |
| 371 | 293 370 | ralrimi | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) |
| 372 | vex | |- h e. _V |
|
| 373 | 372 | rnex | |- ran h e. _V |
| 374 | 373 | uniex | |- U. ran h e. _V |
| 375 | feq1 | |- ( g = U. ran h -> ( g : _om --> A <-> U. ran h : _om --> A ) ) |
|
| 376 | fveq1 | |- ( g = U. ran h -> ( g ` (/) ) = ( U. ran h ` (/) ) ) |
|
| 377 | 376 | eqeq1d | |- ( g = U. ran h -> ( ( g ` (/) ) = C <-> ( U. ran h ` (/) ) = C ) ) |
| 378 | fveq1 | |- ( g = U. ran h -> ( g ` suc k ) = ( U. ran h ` suc k ) ) |
|
| 379 | fveq1 | |- ( g = U. ran h -> ( g ` k ) = ( U. ran h ` k ) ) |
|
| 380 | 379 | fveq2d | |- ( g = U. ran h -> ( F ` ( g ` k ) ) = ( F ` ( U. ran h ` k ) ) ) |
| 381 | 378 380 | eleq12d | |- ( g = U. ran h -> ( ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) |
| 382 | 381 | ralbidv | |- ( g = U. ran h -> ( A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) |
| 383 | 375 377 382 | 3anbi123d | |- ( g = U. ran h -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) <-> ( U. ran h : _om --> A /\ ( U. ran h ` (/) ) = C /\ A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) ) |
| 384 | 374 383 | spcev | |- ( ( U. ran h : _om --> A /\ ( U. ran h ` (/) ) = C /\ A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| 385 | 268 290 371 384 | syl3anc | |- ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| 386 | 385 | exlimiv | |- ( E. h ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |