This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dependent Choice. Axiom DC1 of Schechter p. 149, with the addition of an initial value C . This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdc3.1 | ⊢ 𝐴 ∈ V | |
| Assertion | axdc3 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3.1 | ⊢ 𝐴 ∈ V | |
| 2 | feq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 : suc 𝑛 ⟶ 𝐴 ↔ 𝑠 : suc 𝑛 ⟶ 𝐴 ) ) | |
| 3 | fveq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ ∅ ) = ( 𝑠 ‘ ∅ ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ ∅ ) = 𝐶 ↔ ( 𝑠 ‘ ∅ ) = 𝐶 ) ) |
| 5 | fveq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑗 ) ) | |
| 6 | fveq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 ‘ 𝑗 ) = ( 𝑠 ‘ 𝑗 ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑡 = 𝑠 → ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) |
| 8 | 5 7 | eleq12d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ) ) |
| 10 | suceq | ⊢ ( 𝑗 = 𝑘 → suc 𝑗 = suc 𝑘 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑠 ‘ suc 𝑗 ) = ( 𝑠 ‘ suc 𝑘 ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) | |
| 13 | 11 12 | eleq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ↔ ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ 𝑛 ( 𝑠 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 15 | 9 14 | bitrdi | ⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 16 | 2 4 15 | 3anbi123d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) ↔ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑡 = 𝑠 → ( ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 18 | 17 | cbvabv | ⊢ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } |
| 19 | eqid | ⊢ ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) = ( 𝑥 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ↦ { 𝑦 ∈ { 𝑡 ∣ ∃ 𝑛 ∈ ω ( 𝑡 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑡 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝑡 ‘ suc 𝑗 ) ∈ ( 𝐹 ‘ ( 𝑡 ‘ 𝑗 ) ) ) } ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) | |
| 20 | 1 18 19 | axdc3lem4 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |