This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fununi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | ⊢ ( Fun 𝑓 → Rel 𝑓 ) | |
| 2 | 1 | adantr | ⊢ ( ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Rel 𝑓 ) |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
| 4 | reluni | ⊢ ( Rel ∪ 𝐴 ↔ ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Rel ∪ 𝐴 ) |
| 6 | r19.28v | ⊢ ( ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 8 | ssel | ⊢ ( 𝑤 ⊆ 𝑣 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 → 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ) ) | |
| 9 | 8 | anim1d | ⊢ ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 10 | dffun4 | ⊢ ( Fun 𝑣 ↔ ( Rel 𝑣 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) | |
| 11 | 10 | simprbi | ⊢ ( Fun 𝑣 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 12 | 11 | 19.21bbi | ⊢ ( Fun 𝑣 → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 13 | 12 | 19.21bi | ⊢ ( Fun 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 14 | 9 13 | syl9r | ⊢ ( Fun 𝑣 → ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 16 | ssel | ⊢ ( 𝑣 ⊆ 𝑤 → ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 → 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) ) | |
| 17 | 16 | anim2d | ⊢ ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) ) ) |
| 18 | dffun4 | ⊢ ( Fun 𝑤 ↔ ( Rel 𝑤 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) ) | |
| 19 | 18 | simprbi | ⊢ ( Fun 𝑤 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 20 | 19 | 19.21bbi | ⊢ ( Fun 𝑤 → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 21 | 20 | 19.21bi | ⊢ ( Fun 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 22 | 17 21 | syl9r | ⊢ ( Fun 𝑤 → ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 24 | 15 23 | jaod | ⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 26 | 25 | 2ralimi | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 27 | funeq | ⊢ ( 𝑓 = 𝑤 → ( Fun 𝑓 ↔ Fun 𝑤 ) ) | |
| 28 | sseq1 | ⊢ ( 𝑓 = 𝑤 → ( 𝑓 ⊆ 𝑔 ↔ 𝑤 ⊆ 𝑔 ) ) | |
| 29 | sseq2 | ⊢ ( 𝑓 = 𝑤 → ( 𝑔 ⊆ 𝑓 ↔ 𝑔 ⊆ 𝑤 ) ) | |
| 30 | 28 29 | orbi12d | ⊢ ( 𝑓 = 𝑤 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ) |
| 31 | 27 30 | anbi12d | ⊢ ( 𝑓 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ) ) |
| 32 | sseq2 | ⊢ ( 𝑔 = 𝑣 → ( 𝑤 ⊆ 𝑔 ↔ 𝑤 ⊆ 𝑣 ) ) | |
| 33 | sseq1 | ⊢ ( 𝑔 = 𝑣 → ( 𝑔 ⊆ 𝑤 ↔ 𝑣 ⊆ 𝑤 ) ) | |
| 34 | 32 33 | orbi12d | ⊢ ( 𝑔 = 𝑣 → ( ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ↔ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 35 | 34 | anbi2d | ⊢ ( 𝑔 = 𝑣 → ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 36 | 31 35 | cbvral2vw | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 37 | ralcom | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) | |
| 38 | orcom | ⊢ ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑔 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑔 ) ) | |
| 39 | sseq1 | ⊢ ( 𝑔 = 𝑤 → ( 𝑔 ⊆ 𝑓 ↔ 𝑤 ⊆ 𝑓 ) ) | |
| 40 | sseq2 | ⊢ ( 𝑔 = 𝑤 → ( 𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ 𝑤 ) ) | |
| 41 | 39 40 | orbi12d | ⊢ ( 𝑔 = 𝑤 → ( ( 𝑔 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑔 ) ↔ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) |
| 42 | 38 41 | bitrid | ⊢ ( 𝑔 = 𝑤 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) |
| 43 | 42 | anbi2d | ⊢ ( 𝑔 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun 𝑓 ∧ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) ) |
| 44 | funeq | ⊢ ( 𝑓 = 𝑣 → ( Fun 𝑓 ↔ Fun 𝑣 ) ) | |
| 45 | sseq2 | ⊢ ( 𝑓 = 𝑣 → ( 𝑤 ⊆ 𝑓 ↔ 𝑤 ⊆ 𝑣 ) ) | |
| 46 | sseq1 | ⊢ ( 𝑓 = 𝑣 → ( 𝑓 ⊆ 𝑤 ↔ 𝑣 ⊆ 𝑤 ) ) | |
| 47 | 45 46 | orbi12d | ⊢ ( 𝑓 = 𝑣 → ( ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ↔ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 48 | 44 47 | anbi12d | ⊢ ( 𝑓 = 𝑣 → ( ( Fun 𝑓 ∧ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ↔ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 49 | 43 48 | cbvral2vw | ⊢ ( ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 50 | 37 49 | bitri | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 51 | 36 50 | anbi12i | ⊢ ( ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) ↔ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 52 | anidm | ⊢ ( ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) | |
| 53 | anandir | ⊢ ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ↔ ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) | |
| 54 | 53 | 2ralbii | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 55 | r19.26-2 | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ↔ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) | |
| 56 | 54 55 | bitr2i | ⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 57 | 51 52 56 | 3bitr3i | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 58 | eluni | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ) | |
| 59 | eluni | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) | |
| 60 | 58 59 | anbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ) |
| 61 | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ) | |
| 62 | an4 | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ) | |
| 63 | 62 | biancomi | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 64 | 63 | 2exbii | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 65 | 60 61 64 | 3bitr2i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ↔ ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 66 | 65 | imbi1i | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 67 | 19.23v | ⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) | |
| 68 | r2al | ⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) | |
| 69 | impexp | ⊢ ( ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) | |
| 70 | 69 | 2albii | ⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 71 | 19.23v | ⊢ ( ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) | |
| 72 | 71 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 73 | 68 70 72 | 3bitr2ri | ⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 74 | 66 67 73 | 3bitr2i | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 75 | 26 57 74 | 3imtr4i | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 76 | 75 | alrimiv | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 77 | 76 | alrimivv | ⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 78 | 7 77 | syl | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 79 | dffun4 | ⊢ ( Fun ∪ 𝐴 ↔ ( Rel ∪ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) ) | |
| 80 | 5 78 79 | sylanbrc | ⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ 𝐴 ) |