This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simple substitution lemma for axdc3 . (Contributed by Mario Carneiro, 27-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem3.1 | ⊢ 𝐴 ∈ V | |
| axdc3lem3.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | ||
| axdc3lem3.3 | ⊢ 𝐵 ∈ V | ||
| Assertion | axdc3lem3 | ⊢ ( 𝐵 ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem3.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc3lem3.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | |
| 3 | axdc3lem3.3 | ⊢ 𝐵 ∈ V | |
| 4 | 2 | eleq2i | ⊢ ( 𝐵 ∈ 𝑆 ↔ 𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ) |
| 5 | feq1 | ⊢ ( 𝑠 = 𝐵 → ( 𝑠 : suc 𝑛 ⟶ 𝐴 ↔ 𝐵 : suc 𝑛 ⟶ 𝐴 ) ) | |
| 6 | fveq1 | ⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ ∅ ) = ( 𝐵 ‘ ∅ ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ ∅ ) = 𝐶 ↔ ( 𝐵 ‘ ∅ ) = 𝐶 ) ) |
| 8 | fveq1 | ⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ suc 𝑘 ) = ( 𝐵 ‘ suc 𝑘 ) ) | |
| 9 | fveq1 | ⊢ ( 𝑠 = 𝐵 → ( 𝑠 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑠 = 𝐵 → ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 11 | 8 10 | eleq12d | ⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑠 = 𝐵 → ( ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 13 | 5 7 12 | 3anbi123d | ⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑠 = 𝐵 → ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 15 | 3 14 | elab | ⊢ ( 𝐵 ∈ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ↔ ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 16 | suceq | ⊢ ( 𝑛 = 𝑚 → suc 𝑛 = suc 𝑚 ) | |
| 17 | 16 | feq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝐵 : suc 𝑛 ⟶ 𝐴 ↔ 𝐵 : suc 𝑚 ⟶ 𝐴 ) ) |
| 18 | raleq | ⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) | |
| 19 | 17 18 | 3anbi13d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ↔ ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ω ( 𝐵 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 21 | 4 15 20 | 3bitri | ⊢ ( 𝐵 ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝐵 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝐵 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝐵 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |