This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem.1 | ⊢ 𝐴 ∈ V | |
| axdc3lem.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | ||
| Assertion | axdc3lem | ⊢ 𝑆 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc3lem.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | |
| 3 | dcomex | ⊢ ω ∈ V | |
| 4 | 3 1 | xpex | ⊢ ( ω × 𝐴 ) ∈ V |
| 5 | 4 | pwex | ⊢ 𝒫 ( ω × 𝐴 ) ∈ V |
| 6 | fssxp | ⊢ ( 𝑠 : suc 𝑛 ⟶ 𝐴 → 𝑠 ⊆ ( suc 𝑛 × 𝐴 ) ) | |
| 7 | peano2 | ⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) | |
| 8 | omelon2 | ⊢ ( ω ∈ V → ω ∈ On ) | |
| 9 | 3 8 | ax-mp | ⊢ ω ∈ On |
| 10 | 9 | onelssi | ⊢ ( suc 𝑛 ∈ ω → suc 𝑛 ⊆ ω ) |
| 11 | xpss1 | ⊢ ( suc 𝑛 ⊆ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) ) | |
| 12 | 7 10 11 | 3syl | ⊢ ( 𝑛 ∈ ω → ( suc 𝑛 × 𝐴 ) ⊆ ( ω × 𝐴 ) ) |
| 13 | 6 12 | sylan9ss | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ 𝑛 ∈ ω ) → 𝑠 ⊆ ( ω × 𝐴 ) ) |
| 14 | velpw | ⊢ ( 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ↔ 𝑠 ⊆ ( ω × 𝐴 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ 𝑛 ∈ ω ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑠 : suc 𝑛 ⟶ 𝐴 ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
| 17 | 16 | 3ad2antr1 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
| 18 | 17 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) → 𝑠 ∈ 𝒫 ( ω × 𝐴 ) ) |
| 19 | 18 | abssi | ⊢ { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } ⊆ 𝒫 ( ω × 𝐴 ) |
| 20 | 2 19 | eqsstri | ⊢ 𝑆 ⊆ 𝒫 ( ω × 𝐴 ) |
| 21 | 5 20 | ssexi | ⊢ 𝑆 ∈ V |