This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsub . (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alexsub.1 | ⊢ ( 𝜑 → 𝑋 ∈ UFL ) | |
| alexsub.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐵 ) | ||
| alexsub.3 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | ||
| alexsub.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) | ||
| alexsub.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) | ||
| alexsub.6 | ⊢ ( 𝜑 → ( 𝐽 fLim 𝐹 ) = ∅ ) | ||
| Assertion | alexsublem | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsub.1 | ⊢ ( 𝜑 → 𝑋 ∈ UFL ) | |
| 2 | alexsub.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐵 ) | |
| 3 | alexsub.3 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | |
| 4 | alexsub.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) | |
| 5 | alexsub.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) | |
| 6 | alexsub.6 | ⊢ ( 𝜑 → ( 𝐽 fLim 𝐹 ) = ∅ ) | |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) | |
| 8 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↔ 𝑦 ∈ ( topGen ‘ ( fi ‘ 𝐵 ) ) ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ↔ ( 𝑦 ∈ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ( 𝑦 ∈ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ( 𝑦 ∈ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) ) |
| 12 | tg2 | ⊢ ( ( 𝑦 ∈ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ ( fi ‘ 𝐵 ) ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 14 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 17 | 5 | elfvexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 18 | 2 17 | eqeltrrd | ⊢ ( 𝜑 → ∪ 𝐵 ∈ V ) |
| 19 | uniexb | ⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) | |
| 20 | 18 19 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 21 | elfi2 | ⊢ ( 𝐵 ∈ V → ( 𝑧 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝑧 = ∩ 𝑦 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝑧 = ∩ 𝑦 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ( 𝑧 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝑧 = ∩ 𝑦 ) ) |
| 24 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) | |
| 26 | intss1 | ⊢ ( 𝑧 ∈ 𝑦 → ∩ 𝑦 ⊆ 𝑧 ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) → ∩ 𝑦 ⊆ 𝑧 ) |
| 28 | simplr | ⊢ ( ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑥 ∈ ∩ 𝑦 ) | |
| 29 | 27 28 | sseldd | ⊢ ( ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑥 ∈ 𝑧 ) |
| 30 | 29 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) ∧ ¬ 𝑧 ∈ 𝐹 ) → 𝑥 ∈ 𝑧 ) |
| 31 | eldifsn | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝑦 ≠ ∅ ) ) | |
| 32 | 31 | simplbi | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) → 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 33 | 32 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 34 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐵 ∧ 𝑦 ∈ Fin ) ) | |
| 35 | 34 | simplbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑦 ⊆ 𝐵 ) |
| 36 | 33 35 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝑦 ⊆ 𝐵 ) |
| 37 | 36 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝐵 ) |
| 38 | 37 | anasss | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝐵 ) |
| 39 | 38 | anim1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) ∧ ¬ 𝑧 ∈ 𝐹 ) → ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐹 ) ) |
| 40 | eldif | ⊢ ( 𝑧 ∈ ( 𝐵 ∖ 𝐹 ) ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ∈ 𝐹 ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) ∧ ¬ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ ( 𝐵 ∖ 𝐹 ) ) |
| 42 | elunii | ⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ( 𝐵 ∖ 𝐹 ) ) → 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) | |
| 43 | 30 41 42 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) ∧ ¬ 𝑧 ∈ 𝐹 ) → 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) |
| 44 | 43 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) → ( ¬ 𝑧 ∈ 𝐹 → 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) |
| 45 | 25 44 | mt3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝐹 ) |
| 46 | 45 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐹 ) ) |
| 47 | 46 | ssrdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝑦 ⊆ 𝐹 ) |
| 48 | eldifsni | ⊢ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) → 𝑦 ≠ ∅ ) | |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝑦 ≠ ∅ ) |
| 50 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 51 | 33 50 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 52 | elfir | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ⊆ 𝐹 ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin ) ) → ∩ 𝑦 ∈ ( fi ‘ 𝐹 ) ) | |
| 53 | 24 47 49 51 52 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → ∩ 𝑦 ∈ ( fi ‘ 𝐹 ) ) |
| 54 | filfi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝐹 ) = 𝐹 ) | |
| 55 | 24 54 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → ( fi ‘ 𝐹 ) = 𝐹 ) |
| 56 | 53 55 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝑥 ∈ ∩ 𝑦 ) ) → ∩ 𝑦 ∈ 𝐹 ) |
| 57 | 56 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑥 ∈ ∩ 𝑦 → ∩ 𝑦 ∈ 𝐹 ) ) |
| 58 | eleq2 | ⊢ ( 𝑧 = ∩ 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ∩ 𝑦 ) ) | |
| 59 | eleq1 | ⊢ ( 𝑧 = ∩ 𝑦 → ( 𝑧 ∈ 𝐹 ↔ ∩ 𝑦 ∈ 𝐹 ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑧 = ∩ 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ↔ ( 𝑥 ∈ ∩ 𝑦 → ∩ 𝑦 ∈ 𝐹 ) ) ) |
| 61 | 57 60 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) → ( 𝑧 = ∩ 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) |
| 62 | 61 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ( ∃ 𝑦 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝑧 = ∩ 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) |
| 63 | 23 62 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ( 𝑧 ∈ ( fi ‘ 𝐵 ) → ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) |
| 64 | 63 | imp32 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐹 ) |
| 65 | 64 | adantrrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝑧 ∈ 𝐹 ) |
| 66 | 65 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝑧 ∈ 𝐹 ) |
| 67 | elssuni | ⊢ ( 𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽 ) | |
| 68 | 67 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 69 | fibas | ⊢ ( fi ‘ 𝐵 ) ∈ TopBases | |
| 70 | tgtopon | ⊢ ( ( fi ‘ 𝐵 ) ∈ TopBases → ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) | |
| 71 | 69 70 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) |
| 72 | 3 71 | eqeltrdi | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) |
| 73 | fiuni | ⊢ ( 𝐵 ∈ V → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) | |
| 74 | 20 73 | syl | ⊢ ( 𝜑 → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) |
| 75 | 2 74 | eqtrd | ⊢ ( 𝜑 → 𝑋 = ∪ ( fi ‘ 𝐵 ) ) |
| 76 | 75 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) |
| 77 | 72 76 | eleqtrrd | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 78 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 79 | 77 78 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑋 = ∪ 𝐽 ) |
| 81 | 68 80 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 82 | 81 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝑦 ⊆ 𝑋 ) |
| 83 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝑧 ⊆ 𝑦 ) | |
| 84 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑧 ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) | |
| 85 | 16 66 82 83 84 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) ∧ ( 𝑧 ∈ ( fi ‘ 𝐵 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) ) → 𝑦 ∈ 𝐹 ) |
| 86 | 13 85 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐹 ) |
| 87 | 86 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 88 | 87 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 89 | 88 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) |
| 90 | 89 | imdistanda | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ ∪ ( 𝐵 ∖ 𝐹 ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 91 | 7 90 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) → ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 92 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) | |
| 93 | 77 15 92 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) ) |
| 94 | 91 93 | sylibrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 95 | 94 | ssrdv | ⊢ ( 𝜑 → ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) ⊆ ( 𝐽 fLim 𝐹 ) ) |
| 96 | sseq0 | ⊢ ( ( ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) ⊆ ( 𝐽 fLim 𝐹 ) ∧ ( 𝐽 fLim 𝐹 ) = ∅ ) → ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) = ∅ ) | |
| 97 | 95 6 96 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) = ∅ ) |
| 98 | ssdif0 | ⊢ ( 𝑋 ⊆ ∪ ( 𝐵 ∖ 𝐹 ) ↔ ( 𝑋 ∖ ∪ ( 𝐵 ∖ 𝐹 ) ) = ∅ ) | |
| 99 | 97 98 | sylibr | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ ( 𝐵 ∖ 𝐹 ) ) |
| 100 | difss | ⊢ ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 | |
| 101 | 100 | unissi | ⊢ ∪ ( 𝐵 ∖ 𝐹 ) ⊆ ∪ 𝐵 |
| 102 | 101 2 | sseqtrrid | ⊢ ( 𝜑 → ∪ ( 𝐵 ∖ 𝐹 ) ⊆ 𝑋 ) |
| 103 | 99 102 | eqssd | ⊢ ( 𝜑 → 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) |
| 104 | 103 100 | jctil | ⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) |
| 105 | 20 | difexd | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐹 ) ∈ V ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ( 𝐵 ∖ 𝐹 ) ∈ V ) |
| 107 | sseq1 | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ) ) | |
| 108 | unieq | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ∪ 𝑥 = ∪ ( 𝐵 ∖ 𝐹 ) ) | |
| 109 | 108 | eqeq2d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( 𝑋 = ∪ 𝑥 ↔ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) |
| 110 | 107 109 | anbi12d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ↔ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) ) |
| 111 | 110 | anbi2d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) ↔ ( 𝜑 ∧ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) ) ) |
| 112 | pweq | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → 𝒫 𝑥 = 𝒫 ( 𝐵 ∖ 𝐹 ) ) | |
| 113 | 112 | ineq1d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( 𝒫 𝑥 ∩ Fin ) = ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) |
| 114 | 113 | rexeqdv | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) |
| 115 | 111 114 | imbi12d | ⊢ ( 𝑥 = ( 𝐵 ∖ 𝐹 ) → ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) ↔ ( ( 𝜑 ∧ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) ) |
| 116 | 115 4 | vtoclg | ⊢ ( ( 𝐵 ∖ 𝐹 ) ∈ V → ( ( 𝜑 ∧ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) ) |
| 117 | 106 116 | mpcom | ⊢ ( ( 𝜑 ∧ ( ( 𝐵 ∖ 𝐹 ) ⊆ 𝐵 ∧ 𝑋 = ∪ ( 𝐵 ∖ 𝐹 ) ) ) → ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 118 | 104 117 | mpdan | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 119 | unieq | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∪ ∅ ) | |
| 120 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 121 | 119 120 | eqtrdi | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∅ ) |
| 122 | 121 | neeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑋 ≠ ∪ 𝑦 ↔ 𝑋 ≠ ∅ ) ) |
| 123 | difssd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → ( 𝑋 ∖ 𝑧 ) ⊆ 𝑋 ) | |
| 124 | 123 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → ∀ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ⊆ 𝑋 ) |
| 125 | riinn0 | ⊢ ( ( ∀ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ⊆ 𝑋 ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) = ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) | |
| 126 | 124 125 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) = ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) |
| 127 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑋 ∈ V ) |
| 128 | 127 | difexd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∖ 𝑧 ) ∈ V ) |
| 129 | 128 | ralrimivw | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∀ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ∈ V ) |
| 130 | dfiin2g | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ∈ V → ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) = ∩ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑦 𝑥 = ( 𝑋 ∖ 𝑧 ) } ) | |
| 131 | 129 130 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) = ∩ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑦 𝑥 = ( 𝑋 ∖ 𝑧 ) } ) |
| 132 | eqid | ⊢ ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) | |
| 133 | 132 | rnmpt | ⊢ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑦 𝑥 = ( 𝑋 ∖ 𝑧 ) } |
| 134 | 133 | inteqi | ⊢ ∩ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = ∩ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑦 𝑥 = ( 𝑋 ∖ 𝑧 ) } |
| 135 | 131 134 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) = ∩ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ) |
| 136 | 126 135 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) = ∩ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ) |
| 137 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 138 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ↔ ( 𝑦 ⊆ ( 𝐵 ∖ 𝐹 ) ∧ 𝑦 ∈ Fin ) ) | |
| 139 | 138 | simplbi | ⊢ ( 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) → 𝑦 ⊆ ( 𝐵 ∖ 𝐹 ) ) |
| 140 | 139 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑦 ⊆ ( 𝐵 ∖ 𝐹 ) ) |
| 141 | 140 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ ( 𝐵 ∖ 𝐹 ) ) |
| 142 | 141 | eldifbd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → ¬ 𝑧 ∈ 𝐹 ) |
| 143 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) |
| 144 | 140 | difss2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑦 ⊆ 𝐵 ) |
| 145 | 144 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝐵 ) |
| 146 | elssuni | ⊢ ( 𝑧 ∈ 𝐵 → 𝑧 ⊆ ∪ 𝐵 ) | |
| 147 | 145 146 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ⊆ ∪ 𝐵 ) |
| 148 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝑋 = ∪ 𝐵 ) |
| 149 | 147 148 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ⊆ 𝑋 ) |
| 150 | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ) → ( ¬ 𝑧 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑧 ) ∈ 𝐹 ) ) | |
| 151 | 143 149 150 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑧 ) ∈ 𝐹 ) ) |
| 152 | 142 151 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑋 ∖ 𝑧 ) ∈ 𝐹 ) |
| 153 | 152 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) : 𝑦 ⟶ 𝐹 ) |
| 154 | 153 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ⊆ 𝐹 ) |
| 155 | 132 152 | dmmptd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → dom ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = 𝑦 ) |
| 156 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑦 ≠ ∅ ) | |
| 157 | 155 156 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → dom ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) |
| 158 | dm0rn0 | ⊢ ( dom ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = ∅ ↔ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) = ∅ ) | |
| 159 | 158 | necon3bii | ⊢ ( dom ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ↔ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) |
| 160 | 157 159 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) |
| 161 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 162 | 161 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑦 ∈ Fin ) |
| 163 | abrexfi | ⊢ ( 𝑦 ∈ Fin → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑦 𝑥 = ( 𝑋 ∖ 𝑧 ) } ∈ Fin ) | |
| 164 | 133 163 | eqeltrid | ⊢ ( 𝑦 ∈ Fin → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ∈ Fin ) |
| 165 | 162 164 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ∈ Fin ) |
| 166 | filintn0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ⊆ 𝐹 ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ∧ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ∈ Fin ) ) → ∩ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) | |
| 167 | 137 154 160 165 166 | syl13anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∩ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) |
| 168 | 136 167 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ) |
| 169 | disj3 | ⊢ ( ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) = ∅ ↔ 𝑋 = ( 𝑋 ∖ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) ) | |
| 170 | 169 | necon3bii | ⊢ ( ( 𝑋 ∩ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) ≠ ∅ ↔ 𝑋 ≠ ( 𝑋 ∖ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) ) |
| 171 | 168 170 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑋 ≠ ( 𝑋 ∖ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) ) |
| 172 | iundif2 | ⊢ ∪ 𝑧 ∈ 𝑦 ( 𝑋 ∖ ( 𝑋 ∖ 𝑧 ) ) = ( 𝑋 ∖ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) | |
| 173 | dfss4 | ⊢ ( 𝑧 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑧 ) ) = 𝑧 ) | |
| 174 | 149 173 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑧 ) ) = 𝑧 ) |
| 175 | 174 | iuneq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∪ 𝑧 ∈ 𝑦 ( 𝑋 ∖ ( 𝑋 ∖ 𝑧 ) ) = ∪ 𝑧 ∈ 𝑦 𝑧 ) |
| 176 | uniiun | ⊢ ∪ 𝑦 = ∪ 𝑧 ∈ 𝑦 𝑧 | |
| 177 | 175 176 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ∪ 𝑧 ∈ 𝑦 ( 𝑋 ∖ ( 𝑋 ∖ 𝑧 ) ) = ∪ 𝑦 ) |
| 178 | 172 177 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → ( 𝑋 ∖ ∩ 𝑧 ∈ 𝑦 ( 𝑋 ∖ 𝑧 ) ) = ∪ 𝑦 ) |
| 179 | 171 178 | neeqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) ∧ 𝑦 ≠ ∅ ) → 𝑋 ≠ ∪ 𝑦 ) |
| 180 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 181 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 182 | fileln0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑋 ∈ 𝐹 ) → 𝑋 ≠ ∅ ) | |
| 183 | 180 181 182 | syl2anc2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → 𝑋 ≠ ∅ ) |
| 184 | 122 179 183 | pm2.61ne | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → 𝑋 ≠ ∪ 𝑦 ) |
| 185 | 184 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) ) → ¬ 𝑋 = ∪ 𝑦 ) |
| 186 | 185 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ( 𝒫 ( 𝐵 ∖ 𝐹 ) ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 187 | 118 186 | pm2.65i | ⊢ ¬ 𝜑 |