This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Alexander Subbase Theorem: If B is a subbase for the topology J , and any cover taken from B has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alexsub.1 | ⊢ ( 𝜑 → 𝑋 ∈ UFL ) | |
| alexsub.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐵 ) | ||
| alexsub.3 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | ||
| alexsub.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) | ||
| Assertion | alexsub | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsub.1 | ⊢ ( 𝜑 → 𝑋 ∈ UFL ) | |
| 2 | alexsub.2 | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐵 ) | |
| 3 | alexsub.3 | ⊢ ( 𝜑 → 𝐽 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) | |
| 4 | alexsub.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → 𝑋 ∈ UFL ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → 𝑋 = ∪ 𝐵 ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → 𝐽 = ( topGen ‘ ( fi ‘ 𝐵 ) ) ) |
| 8 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑋 = ∪ 𝑦 ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → 𝑓 ∈ ( UFil ‘ 𝑋 ) ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → ( 𝐽 fLim 𝑓 ) = ∅ ) | |
| 11 | 5 6 7 8 9 10 | alexsublem | ⊢ ¬ ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) |
| 12 | 11 | pm2.21i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ ( 𝐽 fLim 𝑓 ) = ∅ ) ) → ¬ ( 𝐽 fLim 𝑓 ) = ∅ ) |
| 13 | 12 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( ( 𝐽 fLim 𝑓 ) = ∅ → ¬ ( 𝐽 fLim 𝑓 ) = ∅ ) ) |
| 14 | 13 | pm2.01d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ¬ ( 𝐽 fLim 𝑓 ) = ∅ ) |
| 15 | 14 | neqned | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝐽 fLim 𝑓 ) ≠ ∅ ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) |
| 17 | fibas | ⊢ ( fi ‘ 𝐵 ) ∈ TopBases | |
| 18 | tgtopon | ⊢ ( ( fi ‘ 𝐵 ) ∈ TopBases → ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝐵 ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) |
| 20 | 3 19 | eqeltrdi | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) |
| 21 | 1 | elexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 22 | 2 21 | eqeltrrd | ⊢ ( 𝜑 → ∪ 𝐵 ∈ V ) |
| 23 | uniexb | ⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) | |
| 24 | 22 23 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 25 | fiuni | ⊢ ( 𝐵 ∈ V → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ∪ 𝐵 = ∪ ( fi ‘ 𝐵 ) ) |
| 27 | 2 26 | eqtrd | ⊢ ( 𝜑 → 𝑋 = ∪ ( fi ‘ 𝐵 ) ) |
| 28 | 27 | fveq2d | ⊢ ( 𝜑 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ ( fi ‘ 𝐵 ) ) ) |
| 29 | 20 28 | eleqtrrd | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 30 | ufilcmp | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) | |
| 31 | 1 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ∈ Comp ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 32 | 16 31 | mpbird | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) |