This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iundif2 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 3 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ) | |
| 4 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 5 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 6 | 5 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
| 7 | 4 6 | xchbinxr | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 10 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) | |
| 11 | eldif | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 12 | 9 10 11 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 13 | 12 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) |