This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfi2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ ( fi ‘ 𝐵 ) → 𝐴 ∈ V ) | |
| 2 | 1 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) → 𝐴 ∈ V ) ) |
| 3 | simpr | ⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 = ∩ 𝑥 ) | |
| 4 | eldifsni | ⊢ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) → 𝑥 ≠ ∅ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝑥 ≠ ∅ ) |
| 6 | intex | ⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → ∩ 𝑥 ∈ V ) |
| 8 | 3 7 | eqeltrd | ⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 ∈ V ) |
| 9 | 8 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 → 𝐴 ∈ V ) |
| 10 | 9 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 → 𝐴 ∈ V ) ) |
| 11 | elfi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ) ) | |
| 12 | vprc | ⊢ ¬ V ∈ V | |
| 13 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 14 | 13 | inteqd | ⊢ ( 𝑥 ∈ { ∅ } → ∩ 𝑥 = ∩ ∅ ) |
| 15 | int0 | ⊢ ∩ ∅ = V | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝑥 ∈ { ∅ } → ∩ 𝑥 = V ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑥 ∈ { ∅ } → ( ∩ 𝑥 ∈ V ↔ V ∈ V ) ) |
| 18 | 12 17 | mtbiri | ⊢ ( 𝑥 ∈ { ∅ } → ¬ ∩ 𝑥 ∈ V ) |
| 19 | simpr | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 = ∩ 𝑥 ) | |
| 20 | simpll | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → 𝐴 ∈ V ) | |
| 21 | 19 20 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ∩ 𝑥 ∈ V ) |
| 22 | 18 21 | nsyl3 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ¬ 𝑥 ∈ { ∅ } ) |
| 23 | 22 | biantrud | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ¬ 𝑥 ∈ { ∅ } ) ) ) |
| 24 | eldif | ⊢ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ↔ ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ¬ 𝑥 ∈ { ∅ } ) ) | |
| 25 | 23 24 | bitr4di | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 = ∩ 𝑥 ) → ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 26 | 25 | pm5.32da | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) ) |
| 27 | ancom | ⊢ ( ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ) | |
| 28 | ancom | ⊢ ( ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝐴 = ∩ 𝑥 ∧ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 29 | 26 27 28 | 3bitr4g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 = ∩ 𝑥 ) ↔ ( 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) ∧ 𝐴 = ∩ 𝑥 ) ) ) |
| 30 | 29 | rexbidv2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( ∃ 𝑥 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |
| 31 | 11 30 | bitrd | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |
| 32 | 31 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) ) |
| 33 | 2 10 32 | pm5.21ndd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( fi ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ ( ( 𝒫 𝐵 ∩ Fin ) ∖ { ∅ } ) 𝐴 = ∩ 𝑥 ) ) |