This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinn0 | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆 ) = ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) | |
| 2 | r19.2z | ⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) | |
| 3 | 2 | ancoms | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
| 4 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ) |
| 6 | dfss2 | ⊢ ( ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |
| 8 | 1 7 | eqtrid | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆 ) = ∩ 𝑥 ∈ 𝑋 𝑆 ) |