This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass defined in terms of class difference. See comments under dfun2 . (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss4 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐴 ) | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 3 | 2 | notbii | ⊢ ( ¬ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 5 | elin | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 6 | abai | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) ) | |
| 7 | iman | ⊢ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 9 | 5 6 8 | 3bitri | ⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 10 | 4 9 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ ( 𝐵 ∩ 𝐴 ) ) |
| 11 | 10 | difeqri | ⊢ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐵 ∩ 𝐴 ) |
| 12 | 11 | eqeq1i | ⊢ ( ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
| 13 | 1 12 | bitr4i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝐴 ) ) = 𝐴 ) |