This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of indexed intersection when B is a set. (Contributed by Jeff Hankins, 27-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfiin2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) ) | |
| 3 | eleq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 4 | 3 | biimprcd | ⊢ ( 𝑤 ∈ 𝐵 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
| 5 | 4 | alrimiv | ⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
| 6 | eqid | ⊢ 𝐵 = 𝐵 | |
| 7 | eqeq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 = 𝐵 ↔ 𝐵 = 𝐵 ) ) | |
| 8 | 7 3 | imbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( 𝐵 = 𝐵 → 𝑤 ∈ 𝐵 ) ) ) |
| 9 | 8 | spcgv | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) → ( 𝐵 = 𝐵 → 𝑤 ∈ 𝐵 ) ) ) |
| 10 | 6 9 | mpii | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝐵 ) ) |
| 11 | 5 10 | impbid2 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
| 12 | 11 | imim2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
| 13 | 12 | pm5.74d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
| 14 | 13 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
| 15 | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
| 17 | 2 16 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) ) |
| 18 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) | |
| 19 | 18 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
| 20 | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑧 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) | |
| 21 | 19 20 | bitr4i | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
| 22 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) | |
| 23 | vex | ⊢ 𝑧 ∈ V | |
| 24 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑧 = 𝐵 ) ) | |
| 25 | 24 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 26 | 23 25 | elab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 27 | 26 | imbi1i | ⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) |
| 28 | 22 27 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
| 29 | 28 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
| 30 | 19.21v | ⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) | |
| 31 | 30 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ) |
| 32 | 21 29 31 | 3bitr3ri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ( 𝑧 = 𝐵 → 𝑤 ∈ 𝑧 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) |
| 33 | 17 32 | bitrdi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) ) |
| 34 | 1 33 | bitrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) ) ) |
| 35 | 34 | abbidv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → { 𝑤 ∣ ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } = { 𝑤 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) } ) |
| 36 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = { 𝑤 ∣ ∀ 𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 } | |
| 37 | df-int | ⊢ ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑤 ∣ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑤 ∈ 𝑧 ) } | |
| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |