This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tg2 | ⊢ ( ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → 𝐵 ∈ dom topGen ) | |
| 2 | eltg2b | ⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) | |
| 3 | eleq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 5 | 4 | rexbidv | ⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 6 | 5 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ 𝐵 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 7 | 2 6 | biimtrdi | ⊢ ( 𝐵 ∈ dom topGen → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) ) |
| 8 | 1 7 | mpcom | ⊢ ( 𝐴 ∈ ( topGen ‘ 𝐵 ) → ( 𝐶 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |