This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ¬ 𝑆 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilss | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐹 ∨ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) | |
| 2 | 1 | ord | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ¬ 𝑆 ∈ 𝐹 → ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 3 | ufilfil | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 4 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 5 | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) | |
| 6 | 5 | ex | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑆 ∈ 𝐹 → ¬ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |
| 7 | 6 | con2d | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 8 | 3 4 7 | 3syl | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹 ) ) |
| 10 | 2 9 | impbid | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ¬ 𝑆 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑆 ) ∈ 𝐹 ) ) |