This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsubALT . If a point is covered by a collection taken from the base with no finite subcover, a set from the subbase can be added that covers the point so that the resulting collection has no finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010) (Revised by Mario Carneiro, 14-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | alexsubALTlem3 | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | dfrex2 | ⊢ ( ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 ↔ ¬ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 ↔ ∀ 𝑠 ∈ 𝑡 ¬ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) |
| 4 | ralnex | ⊢ ( ∀ 𝑠 ∈ 𝑡 ¬ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ↔ ¬ ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) | |
| 5 | 3 4 | bitr2i | ⊢ ( ¬ ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ↔ ∀ 𝑠 ∈ 𝑡 ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 ) |
| 6 | elin | ⊢ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ↔ ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) ) | |
| 7 | elpwi | ⊢ ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) → 𝑛 ⊆ ( 𝑢 ∪ { 𝑠 } ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) → 𝑛 ⊆ ( 𝑢 ∪ { 𝑠 } ) ) |
| 9 | uncom | ⊢ ( 𝑢 ∪ { 𝑠 } ) = ( { 𝑠 } ∪ 𝑢 ) | |
| 10 | 8 9 | sseqtrdi | ⊢ ( ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) → 𝑛 ⊆ ( { 𝑠 } ∪ 𝑢 ) ) |
| 11 | ssundif | ⊢ ( 𝑛 ⊆ ( { 𝑠 } ∪ 𝑢 ) ↔ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) → ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ) |
| 13 | diffi | ⊢ ( 𝑛 ∈ Fin → ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) → ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) |
| 15 | 12 14 | jca | ⊢ ( ( 𝑛 ∈ 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑛 ∈ Fin ) → ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) |
| 16 | 6 15 | sylbi | ⊢ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) → ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) → ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) |
| 18 | 17 | ad2antll | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) |
| 19 | elin | ⊢ ( ( 𝑛 ∖ { 𝑠 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ( 𝑛 ∖ { 𝑠 } ) ∈ 𝒫 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) | |
| 20 | vex | ⊢ 𝑢 ∈ V | |
| 21 | 20 | elpw2 | ⊢ ( ( 𝑛 ∖ { 𝑠 } ) ∈ 𝒫 𝑢 ↔ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ) |
| 22 | 21 | anbi1i | ⊢ ( ( ( 𝑛 ∖ { 𝑠 } ) ∈ 𝒫 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ↔ ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ) |
| 23 | 19 22 | bitr2i | ⊢ ( ( ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑢 ∧ ( 𝑛 ∖ { 𝑠 } ) ∈ Fin ) ↔ ( 𝑛 ∖ { 𝑠 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 24 | 18 23 | sylib | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ( 𝑛 ∖ { 𝑠 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 25 | simprrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑋 = ∪ 𝑛 ) | |
| 26 | eldif | ⊢ ( 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ↔ ( 𝑥 ∈ 𝑛 ∧ ¬ 𝑥 ∈ { 𝑠 } ) ) | |
| 27 | 26 | simplbi2 | ⊢ ( 𝑥 ∈ 𝑛 → ( ¬ 𝑥 ∈ { 𝑠 } → 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ) |
| 28 | elun | ⊢ ( 𝑥 ∈ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ↔ ( 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ∨ 𝑥 ∈ { 𝑠 } ) ) | |
| 29 | orcom | ⊢ ( ( 𝑥 ∈ { 𝑠 } ∨ 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ↔ ( 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ∨ 𝑥 ∈ { 𝑠 } ) ) | |
| 30 | 28 29 | bitr4i | ⊢ ( 𝑥 ∈ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ↔ ( 𝑥 ∈ { 𝑠 } ∨ 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ) |
| 31 | df-or | ⊢ ( ( 𝑥 ∈ { 𝑠 } ∨ 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ↔ ( ¬ 𝑥 ∈ { 𝑠 } → 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ) | |
| 32 | 30 31 | bitr2i | ⊢ ( ( ¬ 𝑥 ∈ { 𝑠 } → 𝑥 ∈ ( 𝑛 ∖ { 𝑠 } ) ) ↔ 𝑥 ∈ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) |
| 33 | 27 32 | sylib | ⊢ ( 𝑥 ∈ 𝑛 → 𝑥 ∈ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) |
| 34 | 33 | ssriv | ⊢ 𝑛 ⊆ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) |
| 35 | uniss | ⊢ ( 𝑛 ⊆ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) → ∪ 𝑛 ⊆ ∪ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) | |
| 36 | 34 35 | mp1i | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝑛 ⊆ ∪ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) ) |
| 37 | uniun | ⊢ ∪ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ ∪ { 𝑠 } ) | |
| 38 | unisnv | ⊢ ∪ { 𝑠 } = 𝑠 | |
| 39 | 38 | uneq2i | ⊢ ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ ∪ { 𝑠 } ) = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) |
| 40 | 37 39 | eqtri | ⊢ ∪ ( ( 𝑛 ∖ { 𝑠 } ) ∪ { 𝑠 } ) = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) |
| 41 | 36 40 | sseqtrdi | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝑛 ⊆ ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ) |
| 42 | 25 41 | eqsstrd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑋 ⊆ ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ) |
| 43 | difss | ⊢ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑛 | |
| 44 | 43 | unissi | ⊢ ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ ∪ 𝑛 |
| 45 | sseq2 | ⊢ ( 𝑋 = ∪ 𝑛 → ( ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑋 ↔ ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ ∪ 𝑛 ) ) | |
| 46 | 44 45 | mpbiri | ⊢ ( 𝑋 = ∪ 𝑛 → ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑋 ) |
| 47 | 46 | adantl | ⊢ ( ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) → ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑋 ) |
| 48 | 47 | ad2antll | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ ( 𝑛 ∖ { 𝑠 } ) ⊆ 𝑋 ) |
| 49 | elinel1 | ⊢ ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → 𝑡 ∈ 𝒫 𝑥 ) | |
| 50 | 49 | elpwid | ⊢ ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → 𝑡 ⊆ 𝑥 ) |
| 51 | 50 | ad3antrrr | ⊢ ( ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) → 𝑡 ⊆ 𝑥 ) |
| 52 | 51 | ad2antlr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑡 ⊆ 𝑥 ) |
| 53 | simprl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ∈ 𝑡 ) | |
| 54 | 52 53 | sseldd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ∈ 𝑥 ) |
| 55 | elssuni | ⊢ ( 𝑠 ∈ 𝑥 → 𝑠 ⊆ ∪ 𝑥 ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ⊆ ∪ 𝑥 ) |
| 57 | fibas | ⊢ ( fi ‘ 𝑥 ) ∈ TopBases | |
| 58 | unitg | ⊢ ( ( fi ‘ 𝑥 ) ∈ TopBases → ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) = ∪ ( fi ‘ 𝑥 ) ) | |
| 59 | 57 58 | mp1i | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) = ∪ ( fi ‘ 𝑥 ) ) |
| 60 | unieq | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ 𝐽 = ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) | |
| 61 | 60 | 3ad2ant1 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ∪ 𝐽 = ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) |
| 62 | 61 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝐽 = ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) |
| 63 | vex | ⊢ 𝑥 ∈ V | |
| 64 | fiuni | ⊢ ( 𝑥 ∈ V → ∪ 𝑥 = ∪ ( fi ‘ 𝑥 ) ) | |
| 65 | 63 64 | mp1i | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝑥 = ∪ ( fi ‘ 𝑥 ) ) |
| 66 | 59 62 65 | 3eqtr4rd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝑥 = ∪ 𝐽 ) |
| 67 | 66 1 | eqtr4di | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∪ 𝑥 = 𝑋 ) |
| 68 | 56 67 | sseqtrd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ⊆ 𝑋 ) |
| 69 | 48 68 | unssd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ⊆ 𝑋 ) |
| 70 | 42 69 | eqssd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → 𝑋 = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ) |
| 71 | unieq | ⊢ ( 𝑚 = ( 𝑛 ∖ { 𝑠 } ) → ∪ 𝑚 = ∪ ( 𝑛 ∖ { 𝑠 } ) ) | |
| 72 | 71 | uneq1d | ⊢ ( 𝑚 = ( 𝑛 ∖ { 𝑠 } ) → ( ∪ 𝑚 ∪ 𝑠 ) = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ) |
| 73 | 72 | rspceeqv | ⊢ ( ( ( 𝑛 ∖ { 𝑠 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ( ∪ ( 𝑛 ∖ { 𝑠 } ) ∪ 𝑠 ) ) → ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) |
| 74 | 24 70 73 | syl2anc | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) ) ) → ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) |
| 75 | 74 | expr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ 𝑠 ∈ 𝑡 ) → ( ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑛 ) → ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) ) |
| 76 | 75 | expd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ 𝑠 ∈ 𝑡 ) → ( 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) → ( 𝑋 = ∪ 𝑛 → ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) ) ) |
| 77 | 76 | rexlimdv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ 𝑠 ∈ 𝑡 ) → ( ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 → ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) ) |
| 78 | 77 | ralimdva | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 → ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) ) |
| 79 | elinel2 | ⊢ ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → 𝑡 ∈ Fin ) | |
| 80 | 79 | adantr | ⊢ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) → 𝑡 ∈ Fin ) |
| 81 | unieq | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑠 ) → ∪ 𝑚 = ∪ ( 𝑓 ‘ 𝑠 ) ) | |
| 82 | 81 | uneq1d | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑠 ) → ( ∪ 𝑚 ∪ 𝑠 ) = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) |
| 83 | 82 | eqeq2d | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑠 ) → ( 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ↔ 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) |
| 84 | 83 | ac6sfi | ⊢ ( ( 𝑡 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) |
| 85 | 84 | ex | ⊢ ( 𝑡 ∈ Fin → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) ) |
| 86 | 80 85 | syl | ⊢ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) ) |
| 88 | 87 | ad2antrl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑚 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ( ∪ 𝑚 ∪ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) ) |
| 89 | ffvelcdm | ⊢ ( ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑠 ∈ 𝑡 ) → ( 𝑓 ‘ 𝑠 ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) | |
| 90 | elin | ⊢ ( ( 𝑓 ‘ 𝑠 ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ( 𝑓 ‘ 𝑠 ) ∈ 𝒫 𝑢 ∧ ( 𝑓 ‘ 𝑠 ) ∈ Fin ) ) | |
| 91 | elpwi | ⊢ ( ( 𝑓 ‘ 𝑠 ) ∈ 𝒫 𝑢 → ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) | |
| 92 | 91 | adantr | ⊢ ( ( ( 𝑓 ‘ 𝑠 ) ∈ 𝒫 𝑢 ∧ ( 𝑓 ‘ 𝑠 ) ∈ Fin ) → ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 93 | 90 92 | sylbi | ⊢ ( ( 𝑓 ‘ 𝑠 ) ∈ ( 𝒫 𝑢 ∩ Fin ) → ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 94 | 89 93 | syl | ⊢ ( ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑠 ∈ 𝑡 ) → ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 95 | 94 | ralrimiva | ⊢ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) → ∀ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 96 | iunss | ⊢ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ↔ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) | |
| 97 | 95 96 | sylibr | ⊢ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 98 | 97 | ad2antrl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ⊆ 𝑢 ) |
| 99 | simplrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑤 ∈ 𝑢 ) | |
| 100 | 99 | snssd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → { 𝑤 } ⊆ 𝑢 ) |
| 101 | 98 100 | unssd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑢 ) |
| 102 | 89 | elin2d | ⊢ ( ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑠 ∈ 𝑡 ) → ( 𝑓 ‘ 𝑠 ) ∈ Fin ) |
| 103 | 102 | ralrimiva | ⊢ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) → ∀ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) |
| 104 | iunfi | ⊢ ( ( 𝑡 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) | |
| 105 | 80 103 104 | syl2an | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) |
| 106 | 105 | ad4ant14 | ⊢ ( ( ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) |
| 107 | 106 | ad2ant2lr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ) |
| 108 | snfi | ⊢ { 𝑤 } ∈ Fin | |
| 109 | unfi | ⊢ ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∈ Fin ∧ { 𝑤 } ∈ Fin ) → ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) | |
| 110 | 107 108 109 | sylancl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) |
| 111 | 101 110 | jca | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑢 ∧ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) ) |
| 112 | elin | ⊢ ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ∧ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) ) | |
| 113 | 20 | elpw2 | ⊢ ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ↔ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑢 ) |
| 114 | 113 | anbi1i | ⊢ ( ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ∧ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) ↔ ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑢 ∧ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) ) |
| 115 | 112 114 | bitr2i | ⊢ ( ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑢 ∧ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ Fin ) ↔ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 116 | 111 115 | sylib | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 117 | ralnex | ⊢ ( ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ↔ ¬ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) | |
| 118 | 117 | imbi2i | ⊢ ( ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ↔ ( 𝑣 ∈ 𝑦 → ¬ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 119 | 118 | albii | ⊢ ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ↔ ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ¬ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 120 | alinexa | ⊢ ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ¬ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ↔ ¬ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ) | |
| 121 | 119 120 | bitr2i | ⊢ ( ¬ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ↔ ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 122 | fveq2 | ⊢ ( 𝑠 = 𝑧 → ( 𝑓 ‘ 𝑠 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 123 | 122 | unieqd | ⊢ ( 𝑠 = 𝑧 → ∪ ( 𝑓 ‘ 𝑠 ) = ∪ ( 𝑓 ‘ 𝑧 ) ) |
| 124 | id | ⊢ ( 𝑠 = 𝑧 → 𝑠 = 𝑧 ) | |
| 125 | 123 124 | uneq12d | ⊢ ( 𝑠 = 𝑧 → ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ) |
| 126 | 125 | eqeq2d | ⊢ ( 𝑠 = 𝑧 → ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ↔ 𝑋 = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ) ) |
| 127 | 126 | rspcv | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → 𝑋 = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ) ) |
| 128 | eleq2 | ⊢ ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) → ( 𝑣 ∈ 𝑋 ↔ 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ) ) | |
| 129 | 128 | biimpd | ⊢ ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) → ( 𝑣 ∈ 𝑋 → 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ) ) |
| 130 | elun | ⊢ ( 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ↔ ( 𝑣 ∈ ∪ ( 𝑓 ‘ 𝑧 ) ∨ 𝑣 ∈ 𝑧 ) ) | |
| 131 | eluni | ⊢ ( 𝑣 ∈ ∪ ( 𝑓 ‘ 𝑧 ) ↔ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 132 | 131 | orbi1i | ⊢ ( ( 𝑣 ∈ ∪ ( 𝑓 ‘ 𝑧 ) ∨ 𝑣 ∈ 𝑧 ) ↔ ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ∨ 𝑣 ∈ 𝑧 ) ) |
| 133 | df-or | ⊢ ( ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ∨ 𝑣 ∈ 𝑧 ) ↔ ( ¬ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) ) | |
| 134 | alinexa | ⊢ ( ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ↔ ¬ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 135 | 134 | imbi1i | ⊢ ( ( ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) ↔ ( ¬ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) ) |
| 136 | 133 135 | bitr4i | ⊢ ( ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ∨ 𝑣 ∈ 𝑧 ) ↔ ( ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) ) |
| 137 | 130 132 136 | 3bitri | ⊢ ( 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) ↔ ( ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) ) |
| 138 | eleq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑣 ∈ 𝑦 ↔ 𝑣 ∈ 𝑤 ) ) | |
| 139 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ↔ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ) ) | |
| 140 | 139 | notbid | ⊢ ( 𝑦 = 𝑤 → ( ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ↔ ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 141 | 140 | ralbidv | ⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝑡 ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 142 | 138 141 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ↔ ( 𝑣 ∈ 𝑤 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 143 | 142 | spvv | ⊢ ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ( 𝑣 ∈ 𝑤 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ) ) |
| 144 | 122 | eleq2d | ⊢ ( 𝑠 = 𝑧 → ( 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ↔ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 145 | 144 | notbid | ⊢ ( 𝑠 = 𝑧 → ( ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) ↔ ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 146 | 145 | rspcv | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑠 ∈ 𝑡 ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑠 ) → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) |
| 147 | 143 146 | syl9r | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 148 | 147 | alrimdv | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 149 | 148 | imim1d | ⊢ ( 𝑧 ∈ 𝑡 → ( ( ∀ 𝑤 ( 𝑣 ∈ 𝑤 → ¬ 𝑤 ∈ ( 𝑓 ‘ 𝑧 ) ) → 𝑣 ∈ 𝑧 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) |
| 150 | 137 149 | biimtrid | ⊢ ( 𝑧 ∈ 𝑡 → ( 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) |
| 151 | 150 | a1dd | ⊢ ( 𝑧 ∈ 𝑡 → ( 𝑣 ∈ ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) → ( 𝑤 = ∩ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) ) |
| 152 | 129 151 | syl9r | ⊢ ( 𝑧 ∈ 𝑡 → ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑧 ) ∪ 𝑧 ) → ( 𝑣 ∈ 𝑋 → ( 𝑤 = ∩ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) ) ) |
| 153 | 127 152 | syld | ⊢ ( 𝑧 ∈ 𝑡 → ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( 𝑣 ∈ 𝑋 → ( 𝑤 = ∩ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) ) ) |
| 154 | 153 | com14 | ⊢ ( 𝑤 = ∩ 𝑡 → ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( 𝑣 ∈ 𝑋 → ( 𝑧 ∈ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) ) ) |
| 155 | 154 | imp31 | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑡 → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑧 ) ) ) |
| 156 | 155 | com23 | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ( 𝑧 ∈ 𝑡 → 𝑣 ∈ 𝑧 ) ) ) |
| 157 | 156 | ralrimdv | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ∀ 𝑧 ∈ 𝑡 𝑣 ∈ 𝑧 ) ) |
| 158 | vex | ⊢ 𝑣 ∈ V | |
| 159 | 158 | elint2 | ⊢ ( 𝑣 ∈ ∩ 𝑡 ↔ ∀ 𝑧 ∈ 𝑡 𝑣 ∈ 𝑧 ) |
| 160 | 157 159 | imbitrrdi | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ ∩ 𝑡 ) ) |
| 161 | eleq2 | ⊢ ( 𝑤 = ∩ 𝑡 → ( 𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡 ) ) | |
| 162 | 161 | ad2antrr | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑣 ∈ ∩ 𝑡 ) ) |
| 163 | 160 162 | sylibrd | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ∀ 𝑦 ( 𝑣 ∈ 𝑦 → ∀ 𝑠 ∈ 𝑡 ¬ 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑤 ) ) |
| 164 | 121 163 | biimtrid | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ¬ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → 𝑣 ∈ 𝑤 ) ) |
| 165 | 164 | orrd | ⊢ ( ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ∧ 𝑣 ∈ 𝑋 ) → ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ∨ 𝑣 ∈ 𝑤 ) ) |
| 166 | 165 | ex | ⊢ ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) → ( 𝑣 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ∨ 𝑣 ∈ 𝑤 ) ) ) |
| 167 | orc | ⊢ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) → ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) | |
| 168 | 167 | anim2i | ⊢ ( ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 169 | 168 | eximi | ⊢ ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 170 | equid | ⊢ 𝑤 = 𝑤 | |
| 171 | vex | ⊢ 𝑤 ∈ V | |
| 172 | equequ1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 = 𝑤 ↔ 𝑤 = 𝑤 ) ) | |
| 173 | 138 172 | anbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤 ) ↔ ( 𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤 ) ) ) |
| 174 | 171 173 | spcev | ⊢ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 = 𝑤 ) → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤 ) ) |
| 175 | 170 174 | mpan2 | ⊢ ( 𝑣 ∈ 𝑤 → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤 ) ) |
| 176 | olc | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) | |
| 177 | 176 | anim2i | ⊢ ( ( 𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤 ) → ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 178 | 177 | eximi | ⊢ ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 = 𝑤 ) → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 179 | 175 178 | syl | ⊢ ( 𝑣 ∈ 𝑤 → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 180 | 169 179 | jaoi | ⊢ ( ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ∨ 𝑣 ∈ 𝑤 ) → ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 181 | eluni | ⊢ ( 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ↔ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ) | |
| 182 | elun | ⊢ ( 𝑦 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ↔ ( 𝑦 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 ∈ { 𝑤 } ) ) | |
| 183 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) | |
| 184 | velsn | ⊢ ( 𝑦 ∈ { 𝑤 } ↔ 𝑦 = 𝑤 ) | |
| 185 | 183 184 | orbi12i | ⊢ ( ( 𝑦 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 ∈ { 𝑤 } ) ↔ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) |
| 186 | 182 185 | bitri | ⊢ ( 𝑦 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ↔ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) |
| 187 | 186 | anbi2i | ⊢ ( ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ↔ ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 188 | 187 | exbii | ⊢ ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ↔ ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ) |
| 189 | 181 188 | bitr2i | ⊢ ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ( ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑦 = 𝑤 ) ) ↔ 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) |
| 190 | 180 189 | sylib | ⊢ ( ( ∃ 𝑦 ( 𝑣 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝑡 𝑦 ∈ ( 𝑓 ‘ 𝑠 ) ) ∨ 𝑣 ∈ 𝑤 ) → 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) |
| 191 | 166 190 | syl6 | ⊢ ( ( 𝑤 = ∩ 𝑡 ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) → ( 𝑣 ∈ 𝑋 → 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ) |
| 192 | 191 | ad5ant25 | ⊢ ( ( ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) → ( 𝑣 ∈ 𝑋 → 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ) |
| 193 | 192 | ad2ant2l | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( 𝑣 ∈ 𝑋 → 𝑣 ∈ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) ) |
| 194 | 193 | ssrdv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑋 ⊆ ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) |
| 195 | elun | ⊢ ( 𝑣 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ↔ ( 𝑣 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∨ 𝑣 ∈ { 𝑤 } ) ) | |
| 196 | eliun | ⊢ ( 𝑣 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) ) | |
| 197 | velsn | ⊢ ( 𝑣 ∈ { 𝑤 } ↔ 𝑣 = 𝑤 ) | |
| 198 | 196 197 | orbi12i | ⊢ ( ( 𝑣 ∈ ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∨ 𝑣 ∈ { 𝑤 } ) ↔ ( ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑣 = 𝑤 ) ) |
| 199 | 195 198 | bitri | ⊢ ( 𝑣 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ↔ ( ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑣 = 𝑤 ) ) |
| 200 | nfra1 | ⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) | |
| 201 | nfv | ⊢ Ⅎ 𝑠 𝑣 ⊆ 𝑋 | |
| 202 | rsp | ⊢ ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( 𝑠 ∈ 𝑡 → 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) | |
| 203 | eqimss2 | ⊢ ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ⊆ 𝑋 ) | |
| 204 | elssuni | ⊢ ( 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ ∪ ( 𝑓 ‘ 𝑠 ) ) | |
| 205 | ssun3 | ⊢ ( 𝑣 ⊆ ∪ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) | |
| 206 | 204 205 | syl | ⊢ ( 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) |
| 207 | sstr | ⊢ ( ( 𝑣 ⊆ ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ∧ ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ⊆ 𝑋 ) → 𝑣 ⊆ 𝑋 ) | |
| 208 | 207 | expcom | ⊢ ( ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ⊆ 𝑋 → ( 𝑣 ⊆ ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → 𝑣 ⊆ 𝑋 ) ) |
| 209 | 203 206 208 | syl2im | ⊢ ( 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ 𝑋 ) ) |
| 210 | 202 209 | syl6 | ⊢ ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( 𝑠 ∈ 𝑡 → ( 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ 𝑋 ) ) ) |
| 211 | 200 201 210 | rexlimd | ⊢ ( ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) → ( ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ 𝑋 ) ) |
| 212 | 211 | ad2antll | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) → 𝑣 ⊆ 𝑋 ) ) |
| 213 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) | |
| 214 | 213 | ad2antrl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) |
| 215 | 214 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) |
| 216 | 215 99 | sseldd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑤 ∈ ( fi ‘ 𝑥 ) ) |
| 217 | elssuni | ⊢ ( 𝑤 ∈ ( fi ‘ 𝑥 ) → 𝑤 ⊆ ∪ ( fi ‘ 𝑥 ) ) | |
| 218 | 216 217 | syl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑤 ⊆ ∪ ( fi ‘ 𝑥 ) ) |
| 219 | 57 58 | ax-mp | ⊢ ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) = ∪ ( fi ‘ 𝑥 ) |
| 220 | 60 219 | eqtr2di | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ ( fi ‘ 𝑥 ) = ∪ 𝐽 ) |
| 221 | 220 1 | eqtr4di | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ ( fi ‘ 𝑥 ) = 𝑋 ) |
| 222 | 221 | 3ad2ant1 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ∪ ( fi ‘ 𝑥 ) = 𝑋 ) |
| 223 | 222 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∪ ( fi ‘ 𝑥 ) = 𝑋 ) |
| 224 | 218 223 | sseqtrd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑤 ⊆ 𝑋 ) |
| 225 | sseq1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 ⊆ 𝑋 ↔ 𝑤 ⊆ 𝑋 ) ) | |
| 226 | 224 225 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( 𝑣 = 𝑤 → 𝑣 ⊆ 𝑋 ) ) |
| 227 | 212 226 | jaod | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( ( ∃ 𝑠 ∈ 𝑡 𝑣 ∈ ( 𝑓 ‘ 𝑠 ) ∨ 𝑣 = 𝑤 ) → 𝑣 ⊆ 𝑋 ) ) |
| 228 | 199 227 | biimtrid | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ( 𝑣 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) → 𝑣 ⊆ 𝑋 ) ) |
| 229 | 228 | ralrimiv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∀ 𝑣 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) 𝑣 ⊆ 𝑋 ) |
| 230 | unissb | ⊢ ( ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) 𝑣 ⊆ 𝑋 ) | |
| 231 | 229 230 | sylibr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ⊆ 𝑋 ) |
| 232 | 194 231 | eqssd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → 𝑋 = ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) |
| 233 | unieq | ⊢ ( 𝑏 = ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) → ∪ 𝑏 = ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) | |
| 234 | 233 | rspceeqv | ⊢ ( ( ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ∪ ( ∪ 𝑠 ∈ 𝑡 ( 𝑓 ‘ 𝑠 ) ∪ { 𝑤 } ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) |
| 235 | 116 232 234 | syl2anc | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) ∧ ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) |
| 236 | 235 | ex | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 237 | 236 | exlimdv | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ ( 𝒫 𝑢 ∩ Fin ) ∧ ∀ 𝑠 ∈ 𝑡 𝑋 = ( ∪ ( 𝑓 ‘ 𝑠 ) ∪ 𝑠 ) ) → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 238 | 78 88 237 | 3syld | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ∀ 𝑠 ∈ 𝑡 ∃ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) 𝑋 = ∪ 𝑛 → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 239 | 5 238 | biimtrid | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ¬ ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 240 | dfrex2 | ⊢ ( ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ↔ ¬ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) | |
| 241 | 239 240 | imbitrdi | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ¬ ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 → ¬ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 242 | 241 | con4d | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) |
| 243 | 242 | exp32 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) → ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → ( 𝑤 ∈ 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 244 | 243 | com24 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ 𝑎 ⊆ 𝑢 ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑤 ∈ 𝑢 → ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) ) |
| 245 | 244 | exp32 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) → ( 𝑎 ⊆ 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑤 ∈ 𝑢 → ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) ) ) ) |
| 246 | 245 | imp45 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑤 ∈ 𝑢 → ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) |
| 247 | 246 | imp31 | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) |