This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010) (Revised by Mario Carneiro, 11-Feb-2015) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | alexsubALT | ⊢ ( 𝐽 ∈ Comp ↔ ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | alexsubALTlem1 | ⊢ ( 𝐽 ∈ Comp → ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 3 | 1 | alexsubALTlem4 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 4 | velpw | ⊢ ( 𝑐 ∈ 𝒫 𝐽 ↔ 𝑐 ⊆ 𝐽 ) | |
| 5 | eleq2 | ⊢ ( 𝑋 = ∪ 𝑐 → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐 ) ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ 𝑐 ) ) |
| 7 | eluni | ⊢ ( 𝑡 ∈ ∪ 𝑐 ↔ ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) ) | |
| 8 | ssel | ⊢ ( 𝑐 ⊆ 𝐽 → ( 𝑤 ∈ 𝑐 → 𝑤 ∈ 𝐽 ) ) | |
| 9 | eleq2 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑤 ∈ 𝐽 ↔ 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) ) | |
| 10 | tg2 | ⊢ ( ( 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑡 ∈ 𝑤 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) | |
| 11 | 10 | ex | ⊢ ( 𝑤 ∈ ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) |
| 12 | 9 11 | biimtrdi | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑤 ∈ 𝐽 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) ) |
| 13 | 8 12 | sylan9r | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑤 ∈ 𝑐 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) ) |
| 14 | 13 | 3impia | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) ) ) |
| 15 | sseq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝑤 ) ) | |
| 16 | 15 | rspcev | ⊢ ( ( 𝑤 ∈ 𝑐 ∧ 𝑦 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) |
| 17 | 16 | ex | ⊢ ( 𝑤 ∈ 𝑐 → ( 𝑦 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑦 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) |
| 19 | 18 | anim2d | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) → ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 20 | 19 | reximdv | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑤 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 21 | 14 20 | syld | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑤 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 22 | 21 | 3expia | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑤 ∈ 𝑐 → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑡 ∈ 𝑤 → ( 𝑤 ∈ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) ) |
| 24 | 23 | impd | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 25 | 24 | exlimdv | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑐 ) → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 26 | 7 25 | biimtrid | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ) → ( 𝑡 ∈ ∪ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ ∪ 𝑐 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 28 | 6 27 | sylbid | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 → ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 29 | ssel | ⊢ ( 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑧 ) ) | |
| 30 | elunii | ⊢ ( ( 𝑡 ∈ 𝑧 ∧ 𝑧 ∈ 𝑐 ) → 𝑡 ∈ ∪ 𝑐 ) | |
| 31 | 30 | expcom | ⊢ ( 𝑧 ∈ 𝑐 → ( 𝑡 ∈ 𝑧 → 𝑡 ∈ ∪ 𝑐 ) ) |
| 32 | 6 | biimprd | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ ∪ 𝑐 → 𝑡 ∈ 𝑋 ) ) |
| 33 | 31 32 | sylan9r | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑧 ∈ 𝑐 ) → ( 𝑡 ∈ 𝑧 → 𝑡 ∈ 𝑋 ) ) |
| 34 | 29 33 | syl9r | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑧 ∈ 𝑐 ) → ( 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋 ) ) ) |
| 35 | 34 | rexlimdva | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ 𝑋 ) ) ) |
| 36 | 35 | com23 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑦 → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 → 𝑡 ∈ 𝑋 ) ) ) |
| 37 | 36 | impd | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) → 𝑡 ∈ 𝑋 ) ) |
| 38 | 37 | rexlimdvw | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) → 𝑡 ∈ 𝑋 ) ) |
| 39 | 28 38 | impbid | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) ) |
| 40 | elunirab | ⊢ ( 𝑡 ∈ ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ↔ ∃ 𝑦 ∈ ( fi ‘ 𝑥 ) ( 𝑡 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ) ) | |
| 41 | 39 40 | bitr4di | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑡 ∈ 𝑋 ↔ 𝑡 ∈ ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) |
| 42 | 41 | eqrdv | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) |
| 43 | ssrab2 | ⊢ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ⊆ ( fi ‘ 𝑥 ) | |
| 44 | fvex | ⊢ ( fi ‘ 𝑥 ) ∈ V | |
| 45 | 44 | elpw2 | ⊢ ( { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) ↔ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ⊆ ( fi ‘ 𝑥 ) ) |
| 46 | 43 45 | mpbir | ⊢ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) |
| 47 | unieq | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∪ 𝑎 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) | |
| 48 | 47 | eqeq2d | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑎 ↔ 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) |
| 49 | pweq | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → 𝒫 𝑎 = 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) | |
| 50 | 49 | ineq1d | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝒫 𝑎 ∩ Fin ) = ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) ) |
| 51 | 50 | rexeqdv | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ↔ ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 52 | 48 51 | imbi12d | ⊢ ( 𝑎 = { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ↔ ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 53 | 52 | rspcv | ⊢ ( { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∈ 𝒫 ( fi ‘ 𝑥 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| 54 | 46 53 | ax-mp | ⊢ ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 55 | 42 54 | syl5com | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 56 | elfpw | ⊢ ( 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) ↔ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∧ 𝑏 ∈ Fin ) ) | |
| 57 | ssel | ⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑡 ∈ 𝑏 → 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ) ) | |
| 58 | sseq1 | ⊢ ( 𝑦 = 𝑡 → ( 𝑦 ⊆ 𝑧 ↔ 𝑡 ⊆ 𝑧 ) ) | |
| 59 | 58 | rexbidv | ⊢ ( 𝑦 = 𝑡 → ( ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 60 | 59 | elrab | ⊢ ( 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ↔ ( 𝑡 ∈ ( fi ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 61 | 60 | simprbi | ⊢ ( 𝑡 ∈ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) |
| 62 | 57 61 | syl6 | ⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑡 ∈ 𝑏 → ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) ) |
| 63 | 62 | ralrimiv | ⊢ ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) |
| 64 | sseq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ 𝑡 ) → ( 𝑡 ⊆ 𝑧 ↔ 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) | |
| 65 | 64 | ac6sfi | ⊢ ( ( 𝑏 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) |
| 66 | 65 | ex | ⊢ ( 𝑏 ∈ Fin → ( ∀ 𝑡 ∈ 𝑏 ∃ 𝑧 ∈ 𝑐 𝑡 ⊆ 𝑧 → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 67 | 63 66 | syl5 | ⊢ ( 𝑏 ∈ Fin → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 68 | 67 | adantl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ) ) |
| 69 | simprll | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑓 : 𝑏 ⟶ 𝑐 ) | |
| 70 | frn | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → ran 𝑓 ⊆ 𝑐 ) | |
| 71 | 69 70 | syl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ⊆ 𝑐 ) |
| 72 | simplr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑏 ∈ Fin ) | |
| 73 | ffn | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → 𝑓 Fn 𝑏 ) | |
| 74 | dffn4 | ⊢ ( 𝑓 Fn 𝑏 ↔ 𝑓 : 𝑏 –onto→ ran 𝑓 ) | |
| 75 | 73 74 | sylib | ⊢ ( 𝑓 : 𝑏 ⟶ 𝑐 → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 76 | 75 | adantr | ⊢ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 77 | 76 | ad2antrl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑓 : 𝑏 –onto→ ran 𝑓 ) |
| 78 | fodomfi | ⊢ ( ( 𝑏 ∈ Fin ∧ 𝑓 : 𝑏 –onto→ ran 𝑓 ) → ran 𝑓 ≼ 𝑏 ) | |
| 79 | 72 77 78 | syl2anc | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ≼ 𝑏 ) |
| 80 | domfi | ⊢ ( ( 𝑏 ∈ Fin ∧ ran 𝑓 ≼ 𝑏 ) → ran 𝑓 ∈ Fin ) | |
| 81 | 72 79 80 | syl2anc | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ∈ Fin ) |
| 82 | 71 81 | jca | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ) |
| 83 | elin | ⊢ ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ↔ ( ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin ) ) | |
| 84 | vex | ⊢ 𝑐 ∈ V | |
| 85 | 84 | elpw2 | ⊢ ( ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓 ⊆ 𝑐 ) |
| 86 | 85 | anbi1i | ⊢ ( ( ran 𝑓 ∈ 𝒫 𝑐 ∧ ran 𝑓 ∈ Fin ) ↔ ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ) |
| 87 | 83 86 | bitr2i | ⊢ ( ( ran 𝑓 ⊆ 𝑐 ∧ ran 𝑓 ∈ Fin ) ↔ ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 88 | 82 87 | sylib | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 89 | simprr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 = ∪ 𝑏 ) | |
| 90 | uniiun | ⊢ ∪ 𝑏 = ∪ 𝑡 ∈ 𝑏 𝑡 | |
| 91 | simprlr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) | |
| 92 | ss2iun | ⊢ ( ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑡 ∈ 𝑏 𝑡 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) |
| 94 | 90 93 | eqsstrid | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑏 ⊆ ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) ) |
| 95 | fniunfv | ⊢ ( 𝑓 Fn 𝑏 → ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) = ∪ ran 𝑓 ) | |
| 96 | 69 73 95 | 3syl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑡 ∈ 𝑏 ( 𝑓 ‘ 𝑡 ) = ∪ ran 𝑓 ) |
| 97 | 94 96 | sseqtrd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ 𝑏 ⊆ ∪ ran 𝑓 ) |
| 98 | 89 97 | eqsstrd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 ⊆ ∪ ran 𝑓 ) |
| 99 | simpll2 | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑐 ⊆ 𝐽 ) | |
| 100 | 71 99 | sstrd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ran 𝑓 ⊆ 𝐽 ) |
| 101 | uniss | ⊢ ( ran 𝑓 ⊆ 𝐽 → ∪ ran 𝑓 ⊆ ∪ 𝐽 ) | |
| 102 | 101 1 | sseqtrrdi | ⊢ ( ran 𝑓 ⊆ 𝐽 → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 103 | 100 102 | syl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 104 | 98 103 | eqssd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → 𝑋 = ∪ ran 𝑓 ) |
| 105 | unieq | ⊢ ( 𝑑 = ran 𝑓 → ∪ 𝑑 = ∪ ran 𝑓 ) | |
| 106 | 105 | eqeq2d | ⊢ ( 𝑑 = ran 𝑓 → ( 𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ ran 𝑓 ) ) |
| 107 | 106 | rspcev | ⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑋 = ∪ ran 𝑓 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 108 | 88 104 107 | syl2anc | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) ∧ ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) ∧ 𝑋 = ∪ 𝑏 ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 109 | 108 | exp32 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 110 | 109 | exlimdv | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( ∃ 𝑓 ( 𝑓 : 𝑏 ⟶ 𝑐 ∧ ∀ 𝑡 ∈ 𝑏 𝑡 ⊆ ( 𝑓 ‘ 𝑡 ) ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 111 | 68 110 | syld | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ∧ 𝑏 ∈ Fin ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 112 | 111 | ex | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ∈ Fin → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 113 | 112 | com23 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } → ( 𝑏 ∈ Fin → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 114 | 113 | impd | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ( 𝑏 ⊆ { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∧ 𝑏 ∈ Fin ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 115 | 56 114 | biimtrid | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) → ( 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 116 | 115 | rexlimdv | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∃ 𝑏 ∈ ( 𝒫 { 𝑦 ∈ ( fi ‘ 𝑥 ) ∣ ∃ 𝑧 ∈ 𝑐 𝑦 ⊆ 𝑧 } ∩ Fin ) 𝑋 = ∪ 𝑏 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 117 | 55 116 | syld | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ 𝑐 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 118 | 117 | 3exp | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 119 | 118 | com34 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝑐 ⊆ 𝐽 → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 120 | 119 | com23 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑐 ⊆ 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 121 | 4 120 | syl7bi | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 122 | 121 | ralrimdv | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 123 | fibas | ⊢ ( fi ‘ 𝑥 ) ∈ TopBases | |
| 124 | tgcl | ⊢ ( ( fi ‘ 𝑥 ) ∈ TopBases → ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top ) | |
| 125 | 123 124 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top |
| 126 | eleq1 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( 𝐽 ∈ Top ↔ ( topGen ‘ ( fi ‘ 𝑥 ) ) ∈ Top ) ) | |
| 127 | 125 126 | mpbiri | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 128 | 122 127 | jctild | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) ) |
| 129 | 1 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 130 | 128 129 | imbitrrdi | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) → 𝐽 ∈ Comp ) ) |
| 131 | 3 130 | syld | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → 𝐽 ∈ Comp ) ) |
| 132 | 131 | imp | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → 𝐽 ∈ Comp ) |
| 133 | 132 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) → 𝐽 ∈ Comp ) |
| 134 | 2 133 | impbii | ⊢ ( 𝐽 ∈ Comp ↔ ∃ 𝑥 ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |