This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for alexsubALT . If any cover taken from a subbase has a finite subcover, any cover taken from the corresponding base has a finite subcover. (Contributed by Jeff Hankins, 28-Jan-2010) (Revised by Mario Carneiro, 14-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | alexsubALTlem4 | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsubALT.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ralnex | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ¬ ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) | |
| 3 | 1 | alexsubALTlem2 | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ∃ 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 ) |
| 4 | elun | ⊢ ( 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ ( 𝑢 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ 𝑢 ∈ { ∅ } ) ) | |
| 5 | sseq2 | ⊢ ( 𝑧 = 𝑢 → ( 𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑢 ) ) | |
| 6 | pweq | ⊢ ( 𝑧 = 𝑢 → 𝒫 𝑧 = 𝒫 𝑢 ) | |
| 7 | 6 | ineq1d | ⊢ ( 𝑧 = 𝑢 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝑢 ∩ Fin ) ) |
| 8 | 7 | raleqdv | ⊢ ( 𝑧 = 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( 𝑧 = 𝑢 → ( ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ↔ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 10 | 9 | elrab | ⊢ ( 𝑢 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ↔ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 11 | velsn | ⊢ ( 𝑢 ∈ { ∅ } ↔ 𝑢 = ∅ ) | |
| 12 | 10 11 | orbi12i | ⊢ ( ( 𝑢 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∨ 𝑢 ∈ { ∅ } ) ↔ ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑢 = ∅ ) ) |
| 13 | 4 12 | bitri | ⊢ ( 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ↔ ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑢 = ∅ ) ) |
| 14 | ralnex | ⊢ ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) | |
| 15 | simprrl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → 𝑎 ⊆ 𝑢 ) | |
| 16 | 15 | unissd | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ∪ 𝑎 ⊆ ∪ 𝑢 ) |
| 17 | sseq1 | ⊢ ( 𝑋 = ∪ 𝑎 → ( 𝑋 ⊆ ∪ 𝑢 ↔ ∪ 𝑎 ⊆ ∪ 𝑢 ) ) | |
| 18 | 16 17 | syl5ibrcom | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑋 = ∪ 𝑎 → 𝑋 ⊆ ∪ 𝑢 ) ) |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | inss1 | ⊢ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑥 | |
| 21 | 19 20 | elpwi2 | ⊢ ( 𝑥 ∩ 𝑢 ) ∈ 𝒫 𝑥 |
| 22 | unieq | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → ∪ 𝑐 = ∪ ( 𝑥 ∩ 𝑢 ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → ( 𝑋 = ∪ 𝑐 ↔ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 24 | pweq | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → 𝒫 𝑐 = 𝒫 ( 𝑥 ∩ 𝑢 ) ) | |
| 25 | 24 | ineq1d | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → ( 𝒫 𝑐 ∩ Fin ) = ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) ) |
| 26 | 25 | rexeqdv | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → ( ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ↔ ∃ 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 27 | 23 26 | imbi12d | ⊢ ( 𝑐 = ( 𝑥 ∩ 𝑢 ) → ( ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ↔ ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 28 | 27 | rspccv | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( ( 𝑥 ∩ 𝑢 ) ∈ 𝒫 𝑥 → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 29 | 21 28 | mpi | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 30 | inss2 | ⊢ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑢 | |
| 31 | sstr | ⊢ ( ( 𝑑 ⊆ ( 𝑥 ∩ 𝑢 ) ∧ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑢 ) → 𝑑 ⊆ 𝑢 ) | |
| 32 | 30 31 | mpan2 | ⊢ ( 𝑑 ⊆ ( 𝑥 ∩ 𝑢 ) → 𝑑 ⊆ 𝑢 ) |
| 33 | 32 | anim1i | ⊢ ( ( 𝑑 ⊆ ( 𝑥 ∩ 𝑢 ) ∧ 𝑑 ∈ Fin ) → ( 𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin ) ) |
| 34 | elfpw | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) ↔ ( 𝑑 ⊆ ( 𝑥 ∩ 𝑢 ) ∧ 𝑑 ∈ Fin ) ) | |
| 35 | elfpw | ⊢ ( 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( 𝑑 ⊆ 𝑢 ∧ 𝑑 ∈ Fin ) ) | |
| 36 | 33 34 35 | 3imtr4i | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) → 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 37 | 36 | anim1i | ⊢ ( ( 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) ∧ 𝑋 = ∪ 𝑑 ) → ( 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ∪ 𝑑 ) ) |
| 38 | 37 | reximi2 | ⊢ ( ∃ 𝑑 ∈ ( 𝒫 ( 𝑥 ∩ 𝑢 ) ∩ Fin ) 𝑋 = ∪ 𝑑 → ∃ 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 39 | 29 38 | syl6 | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 40 | unieq | ⊢ ( 𝑑 = 𝑏 → ∪ 𝑑 = ∪ 𝑏 ) | |
| 41 | 40 | eqeq2d | ⊢ ( 𝑑 = 𝑏 → ( 𝑋 = ∪ 𝑑 ↔ 𝑋 = ∪ 𝑏 ) ) |
| 42 | 41 | cbvrexvw | ⊢ ( ∃ 𝑑 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑑 ↔ ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) |
| 43 | 39 42 | imbitrdi | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 44 | dfrex2 | ⊢ ( ∃ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑏 ↔ ¬ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) | |
| 45 | 43 44 | imbitrdi | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) → ¬ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 46 | 45 | con2d | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 47 | 46 | a1d | ⊢ ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑎 ⊆ 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) |
| 48 | 47 | 3ad2ant2 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( 𝑎 ⊆ 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( 𝑎 ⊆ 𝑢 → ( ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) |
| 50 | 49 | impd | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 51 | 50 | impr | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ¬ 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ) |
| 52 | 20 | unissi | ⊢ ∪ ( 𝑥 ∩ 𝑢 ) ⊆ ∪ 𝑥 |
| 53 | fiuni | ⊢ ( 𝑥 ∈ V → ∪ 𝑥 = ∪ ( fi ‘ 𝑥 ) ) | |
| 54 | 53 | elv | ⊢ ∪ 𝑥 = ∪ ( fi ‘ 𝑥 ) |
| 55 | fibas | ⊢ ( fi ‘ 𝑥 ) ∈ TopBases | |
| 56 | unitg | ⊢ ( ( fi ‘ 𝑥 ) ∈ TopBases → ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) = ∪ ( fi ‘ 𝑥 ) ) | |
| 57 | 55 56 | ax-mp | ⊢ ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) = ∪ ( fi ‘ 𝑥 ) |
| 58 | 54 57 | eqtr4i | ⊢ ∪ 𝑥 = ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) |
| 59 | unieq | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ 𝐽 = ∪ ( topGen ‘ ( fi ‘ 𝑥 ) ) ) | |
| 60 | 58 59 | eqtr4id | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ 𝑥 = ∪ 𝐽 ) |
| 61 | 60 1 | eqtr4di | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ∪ 𝑥 = 𝑋 ) |
| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ∪ 𝑥 = 𝑋 ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ∪ 𝑥 = 𝑋 ) |
| 64 | 52 63 | sseqtrid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ∪ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑋 ) |
| 65 | eqcom | ⊢ ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ↔ ∪ ( 𝑥 ∩ 𝑢 ) = 𝑋 ) | |
| 66 | eqss | ⊢ ( ∪ ( 𝑥 ∩ 𝑢 ) = 𝑋 ↔ ( ∪ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑋 ∧ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) | |
| 67 | 66 | baib | ⊢ ( ∪ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑋 → ( ∪ ( 𝑥 ∩ 𝑢 ) = 𝑋 ↔ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 68 | 65 67 | bitrid | ⊢ ( ∪ ( 𝑥 ∩ 𝑢 ) ⊆ 𝑋 → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ↔ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 69 | 64 68 | syl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑋 = ∪ ( 𝑥 ∩ 𝑢 ) ↔ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 70 | 51 69 | mtbid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ¬ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) |
| 71 | sstr2 | ⊢ ( 𝑋 ⊆ ∪ 𝑢 → ( ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) → 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) | |
| 72 | 71 | con3rr3 | ⊢ ( ¬ 𝑋 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) → ( 𝑋 ⊆ ∪ 𝑢 → ¬ ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 73 | 70 72 | syl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑋 ⊆ ∪ 𝑢 → ¬ ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 74 | nss | ⊢ ( ¬ ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) | |
| 75 | df-rex | ⊢ ( ∃ 𝑦 ∈ ∪ 𝑢 ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ↔ ∃ 𝑦 ( 𝑦 ∈ ∪ 𝑢 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) | |
| 76 | 74 75 | bitr4i | ⊢ ( ¬ ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) ↔ ∃ 𝑦 ∈ ∪ 𝑢 ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) |
| 77 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝑢 ↔ ∃ 𝑤 ∈ 𝑢 𝑦 ∈ 𝑤 ) | |
| 78 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) | |
| 79 | 78 | sseld | ⊢ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) → ( 𝑤 ∈ 𝑢 → 𝑤 ∈ ( fi ‘ 𝑥 ) ) ) |
| 80 | 79 | ad2antrl | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑤 ∈ 𝑢 → 𝑤 ∈ ( fi ‘ 𝑥 ) ) ) |
| 81 | elfi | ⊢ ( ( 𝑤 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑤 ∈ ( fi ‘ 𝑥 ) ↔ ∃ 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑤 = ∩ 𝑡 ) ) | |
| 82 | 81 | el2v | ⊢ ( 𝑤 ∈ ( fi ‘ 𝑥 ) ↔ ∃ 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑤 = ∩ 𝑡 ) |
| 83 | 80 82 | imbitrdi | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑤 ∈ 𝑢 → ∃ 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑤 = ∩ 𝑡 ) ) |
| 84 | 1 | alexsubALTlem3 | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) → ∃ 𝑠 ∈ 𝑡 ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) |
| 85 | 78 | adantr | ⊢ ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) |
| 86 | 85 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑢 ⊆ ( fi ‘ 𝑥 ) ) |
| 87 | ssfii | ⊢ ( 𝑥 ∈ V → 𝑥 ⊆ ( fi ‘ 𝑥 ) ) | |
| 88 | 87 | elv | ⊢ 𝑥 ⊆ ( fi ‘ 𝑥 ) |
| 89 | elinel1 | ⊢ ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → 𝑡 ∈ 𝒫 𝑥 ) | |
| 90 | 89 | elpwid | ⊢ ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → 𝑡 ⊆ 𝑥 ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) → 𝑡 ⊆ 𝑥 ) |
| 92 | 91 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑡 ⊆ 𝑥 ) |
| 93 | simprl | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑠 ∈ 𝑡 ) | |
| 94 | 92 93 | sseldd | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑠 ∈ 𝑥 ) |
| 95 | 88 94 | sselid | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑠 ∈ ( fi ‘ 𝑥 ) ) |
| 96 | 95 | snssd | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → { 𝑠 } ⊆ ( fi ‘ 𝑥 ) ) |
| 97 | 86 96 | unssd | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( 𝑢 ∪ { 𝑠 } ) ⊆ ( fi ‘ 𝑥 ) ) |
| 98 | fvex | ⊢ ( fi ‘ 𝑥 ) ∈ V | |
| 99 | 98 | elpw2 | ⊢ ( ( 𝑢 ∪ { 𝑠 } ) ∈ 𝒫 ( fi ‘ 𝑥 ) ↔ ( 𝑢 ∪ { 𝑠 } ) ⊆ ( fi ‘ 𝑥 ) ) |
| 100 | 97 99 | sylibr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( 𝑢 ∪ { 𝑠 } ) ∈ 𝒫 ( fi ‘ 𝑥 ) ) |
| 101 | simprl | ⊢ ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → 𝑎 ⊆ 𝑢 ) | |
| 102 | 101 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑎 ⊆ 𝑢 ) |
| 103 | ssun1 | ⊢ 𝑢 ⊆ ( 𝑢 ∪ { 𝑠 } ) | |
| 104 | 102 103 | sstrdi | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑎 ⊆ ( 𝑢 ∪ { 𝑠 } ) ) |
| 105 | unieq | ⊢ ( 𝑛 = 𝑏 → ∪ 𝑛 = ∪ 𝑏 ) | |
| 106 | 105 | eqeq2d | ⊢ ( 𝑛 = 𝑏 → ( 𝑋 = ∪ 𝑛 ↔ 𝑋 = ∪ 𝑏 ) ) |
| 107 | 106 | notbid | ⊢ ( 𝑛 = 𝑏 → ( ¬ 𝑋 = ∪ 𝑛 ↔ ¬ 𝑋 = ∪ 𝑏 ) ) |
| 108 | 107 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ↔ ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) |
| 109 | 108 | biimpi | ⊢ ( ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 → ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) |
| 110 | 109 | ad2antll | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) |
| 111 | 100 104 110 | jca32 | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( ( 𝑢 ∪ { 𝑠 } ) ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ( 𝑢 ∪ { 𝑠 } ) ∧ ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 112 | sseq2 | ⊢ ( 𝑧 = ( 𝑢 ∪ { 𝑠 } ) → ( 𝑎 ⊆ 𝑧 ↔ 𝑎 ⊆ ( 𝑢 ∪ { 𝑠 } ) ) ) | |
| 113 | pweq | ⊢ ( 𝑧 = ( 𝑢 ∪ { 𝑠 } ) → 𝒫 𝑧 = 𝒫 ( 𝑢 ∪ { 𝑠 } ) ) | |
| 114 | 113 | ineq1d | ⊢ ( 𝑧 = ( 𝑢 ∪ { 𝑠 } ) → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ) |
| 115 | 114 | raleqdv | ⊢ ( 𝑧 = ( 𝑢 ∪ { 𝑠 } ) → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 116 | 112 115 | anbi12d | ⊢ ( 𝑧 = ( 𝑢 ∪ { 𝑠 } ) → ( ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ↔ ( 𝑎 ⊆ ( 𝑢 ∪ { 𝑠 } ) ∧ ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 117 | 116 | elrab | ⊢ ( ( 𝑢 ∪ { 𝑠 } ) ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ↔ ( ( 𝑢 ∪ { 𝑠 } ) ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ ( 𝑢 ∪ { 𝑠 } ) ∧ ∀ 𝑏 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 118 | 111 117 | sylibr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( 𝑢 ∪ { 𝑠 } ) ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) |
| 119 | elun1 | ⊢ ( ( 𝑢 ∪ { 𝑠 } ) ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } → ( 𝑢 ∪ { 𝑠 } ) ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) | |
| 120 | 118 119 | syl | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( 𝑢 ∪ { 𝑠 } ) ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) |
| 121 | vsnid | ⊢ 𝑠 ∈ { 𝑠 } | |
| 122 | elun2 | ⊢ ( 𝑠 ∈ { 𝑠 } → 𝑠 ∈ ( 𝑢 ∪ { 𝑠 } ) ) | |
| 123 | 121 122 | ax-mp | ⊢ 𝑠 ∈ ( 𝑢 ∪ { 𝑠 } ) |
| 124 | intss1 | ⊢ ( 𝑠 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑠 ) | |
| 125 | sseq1 | ⊢ ( 𝑤 = ∩ 𝑡 → ( 𝑤 ⊆ 𝑠 ↔ ∩ 𝑡 ⊆ 𝑠 ) ) | |
| 126 | 124 125 | syl5ibrcom | ⊢ ( 𝑠 ∈ 𝑡 → ( 𝑤 = ∩ 𝑡 → 𝑤 ⊆ 𝑠 ) ) |
| 127 | 126 | impcom | ⊢ ( ( 𝑤 = ∩ 𝑡 ∧ 𝑠 ∈ 𝑡 ) → 𝑤 ⊆ 𝑠 ) |
| 128 | 127 | ad4ant24 | ⊢ ( ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ 𝑠 ∈ 𝑡 ) → 𝑤 ⊆ 𝑠 ) |
| 129 | 128 | adantl | ⊢ ( ( 𝑤 ∈ 𝑢 ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ 𝑠 ∈ 𝑡 ) ) → 𝑤 ⊆ 𝑠 ) |
| 130 | 129 | adantrrr | ⊢ ( ( 𝑤 ∈ 𝑢 ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑤 ⊆ 𝑠 ) |
| 131 | 130 | adantll | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑤 ⊆ 𝑠 ) |
| 132 | simprlr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑦 ∈ 𝑤 ) | |
| 133 | 131 132 | sseldd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑦 ∈ 𝑠 ) |
| 134 | 90 | ad2antrr | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) → 𝑡 ⊆ 𝑥 ) |
| 135 | 134 | ad2antrl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑡 ⊆ 𝑥 ) |
| 136 | simprrl | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ∈ 𝑡 ) | |
| 137 | 135 136 | sseldd | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → 𝑠 ∈ 𝑥 ) |
| 138 | elin | ⊢ ( 𝑠 ∈ ( 𝑥 ∩ 𝑢 ) ↔ ( 𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢 ) ) | |
| 139 | elunii | ⊢ ( ( 𝑦 ∈ 𝑠 ∧ 𝑠 ∈ ( 𝑥 ∩ 𝑢 ) ) → 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) | |
| 140 | 139 | ex | ⊢ ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ ( 𝑥 ∩ 𝑢 ) → 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 141 | 138 140 | biimtrrid | ⊢ ( 𝑦 ∈ 𝑠 → ( ( 𝑠 ∈ 𝑥 ∧ 𝑠 ∈ 𝑢 ) → 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 142 | 141 | expd | ⊢ ( 𝑦 ∈ 𝑠 → ( 𝑠 ∈ 𝑥 → ( 𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) |
| 143 | 133 137 142 | sylc | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → ( 𝑠 ∈ 𝑢 → 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) |
| 144 | 143 | con3d | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) ) → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ¬ 𝑠 ∈ 𝑢 ) ) |
| 145 | 144 | expr | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ) → ( ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ¬ 𝑠 ∈ 𝑢 ) ) ) |
| 146 | 145 | com23 | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ 𝑦 ∈ 𝑤 ) ) → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ( ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) → ¬ 𝑠 ∈ 𝑢 ) ) ) |
| 147 | 146 | exp32 | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) → ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ( ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) → ¬ 𝑠 ∈ 𝑢 ) ) ) ) ) |
| 148 | 147 | imp55 | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ¬ 𝑠 ∈ 𝑢 ) |
| 149 | vex | ⊢ 𝑠 ∈ V | |
| 150 | eleq1w | ⊢ ( 𝑣 = 𝑠 → ( 𝑣 ∈ ( 𝑢 ∪ { 𝑠 } ) ↔ 𝑠 ∈ ( 𝑢 ∪ { 𝑠 } ) ) ) | |
| 151 | elequ1 | ⊢ ( 𝑣 = 𝑠 → ( 𝑣 ∈ 𝑢 ↔ 𝑠 ∈ 𝑢 ) ) | |
| 152 | 151 | notbid | ⊢ ( 𝑣 = 𝑠 → ( ¬ 𝑣 ∈ 𝑢 ↔ ¬ 𝑠 ∈ 𝑢 ) ) |
| 153 | 150 152 | anbi12d | ⊢ ( 𝑣 = 𝑠 → ( ( 𝑣 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑣 ∈ 𝑢 ) ↔ ( 𝑠 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑠 ∈ 𝑢 ) ) ) |
| 154 | 149 153 | spcev | ⊢ ( ( 𝑠 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑠 ∈ 𝑢 ) → ∃ 𝑣 ( 𝑣 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑣 ∈ 𝑢 ) ) |
| 155 | 123 148 154 | sylancr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ∃ 𝑣 ( 𝑣 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑣 ∈ 𝑢 ) ) |
| 156 | nss | ⊢ ( ¬ ( 𝑢 ∪ { 𝑠 } ) ⊆ 𝑢 ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑢 ∪ { 𝑠 } ) ∧ ¬ 𝑣 ∈ 𝑢 ) ) | |
| 157 | 155 156 | sylibr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ¬ ( 𝑢 ∪ { 𝑠 } ) ⊆ 𝑢 ) |
| 158 | eqimss2 | ⊢ ( 𝑢 = ( 𝑢 ∪ { 𝑠 } ) → ( 𝑢 ∪ { 𝑠 } ) ⊆ 𝑢 ) | |
| 159 | 158 | necon3bi | ⊢ ( ¬ ( 𝑢 ∪ { 𝑠 } ) ⊆ 𝑢 → 𝑢 ≠ ( 𝑢 ∪ { 𝑠 } ) ) |
| 160 | 157 159 | syl | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑢 ≠ ( 𝑢 ∪ { 𝑠 } ) ) |
| 161 | 160 103 | jctil | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ( 𝑢 ⊆ ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑢 ≠ ( 𝑢 ∪ { 𝑠 } ) ) ) |
| 162 | df-pss | ⊢ ( 𝑢 ⊊ ( 𝑢 ∪ { 𝑠 } ) ↔ ( 𝑢 ⊆ ( 𝑢 ∪ { 𝑠 } ) ∧ 𝑢 ≠ ( 𝑢 ∪ { 𝑠 } ) ) ) | |
| 163 | 161 162 | sylibr | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → 𝑢 ⊊ ( 𝑢 ∪ { 𝑠 } ) ) |
| 164 | psseq2 | ⊢ ( 𝑣 = ( 𝑢 ∪ { 𝑠 } ) → ( 𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ ( 𝑢 ∪ { 𝑠 } ) ) ) | |
| 165 | 164 | rspcev | ⊢ ( ( ( 𝑢 ∪ { 𝑠 } ) ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∧ 𝑢 ⊊ ( 𝑢 ∪ { 𝑠 } ) ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) |
| 166 | 120 163 165 | syl2anc | ⊢ ( ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) ∧ ( 𝑠 ∈ 𝑡 ∧ ∀ 𝑛 ∈ ( 𝒫 ( 𝑢 ∪ { 𝑠 } ) ∩ Fin ) ¬ 𝑋 = ∪ 𝑛 ) ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) |
| 167 | 84 166 | rexlimddv | ⊢ ( ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) ∧ ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) ∧ ( 𝑦 ∈ 𝑤 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) ) ) ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) |
| 168 | 167 | exp45 | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) → ( ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) ∧ 𝑤 = ∩ 𝑡 ) → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) ) |
| 169 | 168 | expd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) → ( 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) → ( 𝑤 = ∩ 𝑡 → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) ) ) |
| 170 | 169 | rexlimdv | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) ∧ 𝑤 ∈ 𝑢 ) → ( ∃ 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑤 = ∩ 𝑡 → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) ) |
| 171 | 170 | ex | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑤 ∈ 𝑢 → ( ∃ 𝑡 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑤 = ∩ 𝑡 → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) ) ) |
| 172 | 83 171 | mpdd | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑤 ∈ 𝑢 → ( 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) ) |
| 173 | 172 | rexlimdv | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( ∃ 𝑤 ∈ 𝑢 𝑦 ∈ 𝑤 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) |
| 174 | 77 173 | biimtrid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑦 ∈ ∪ 𝑢 → ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) ) |
| 175 | 174 | rexlimdv | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( ∃ 𝑦 ∈ ∪ 𝑢 ¬ 𝑦 ∈ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) |
| 176 | 76 175 | biimtrid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( ¬ ∪ 𝑢 ⊆ ∪ ( 𝑥 ∩ 𝑢 ) → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) |
| 177 | 18 73 176 | 3syld | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( 𝑋 = ∪ 𝑎 → ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 ) ) |
| 178 | 177 | con3d | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( ¬ ∃ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 179 | 14 178 | biimtrid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 180 | 179 | ex | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) ) |
| 181 | 180 | adantr | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) ) |
| 182 | ssun1 | ⊢ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ⊆ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) | |
| 183 | eqimss2 | ⊢ ( 𝑧 = 𝑎 → 𝑎 ⊆ 𝑧 ) | |
| 184 | 183 | biantrurd | ⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ) |
| 185 | pweq | ⊢ ( 𝑧 = 𝑎 → 𝒫 𝑧 = 𝒫 𝑎 ) | |
| 186 | 185 | ineq1d | ⊢ ( 𝑧 = 𝑎 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝑎 ∩ Fin ) ) |
| 187 | 186 | raleqdv | ⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ↔ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 188 | 184 187 | bitr3d | ⊢ ( 𝑧 = 𝑎 → ( ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ↔ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) |
| 189 | simpll3 | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) | |
| 190 | simplr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) | |
| 191 | 188 189 190 | elrabd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → 𝑎 ∈ { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ) |
| 192 | 182 191 | sselid | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → 𝑎 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ) |
| 193 | psseq2 | ⊢ ( 𝑣 = 𝑎 → ( 𝑢 ⊊ 𝑣 ↔ 𝑢 ⊊ 𝑎 ) ) | |
| 194 | 193 | notbid | ⊢ ( 𝑣 = 𝑎 → ( ¬ 𝑢 ⊊ 𝑣 ↔ ¬ 𝑢 ⊊ 𝑎 ) ) |
| 195 | 194 | rspcv | ⊢ ( 𝑎 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎 ) ) |
| 196 | 192 195 | syl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑢 ⊊ 𝑎 ) ) |
| 197 | id | ⊢ ( 𝑎 = ∅ → 𝑎 = ∅ ) | |
| 198 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑎 | |
| 199 | 0fi | ⊢ ∅ ∈ Fin | |
| 200 | 198 199 | elini | ⊢ ∅ ∈ ( 𝒫 𝑎 ∩ Fin ) |
| 201 | 197 200 | eqeltrdi | ⊢ ( 𝑎 = ∅ → 𝑎 ∈ ( 𝒫 𝑎 ∩ Fin ) ) |
| 202 | unieq | ⊢ ( 𝑏 = 𝑎 → ∪ 𝑏 = ∪ 𝑎 ) | |
| 203 | 202 | eqeq2d | ⊢ ( 𝑏 = 𝑎 → ( 𝑋 = ∪ 𝑏 ↔ 𝑋 = ∪ 𝑎 ) ) |
| 204 | 203 | notbid | ⊢ ( 𝑏 = 𝑎 → ( ¬ 𝑋 = ∪ 𝑏 ↔ ¬ 𝑋 = ∪ 𝑎 ) ) |
| 205 | 204 | rspccv | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑎 ∈ ( 𝒫 𝑎 ∩ Fin ) → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 206 | 201 205 | syl5 | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑎 = ∅ → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 207 | 206 | necon2ad | ⊢ ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ( 𝑋 = ∪ 𝑎 → 𝑎 ≠ ∅ ) ) |
| 208 | 207 | ad2antlr | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( 𝑋 = ∪ 𝑎 → 𝑎 ≠ ∅ ) ) |
| 209 | psseq1 | ⊢ ( 𝑢 = ∅ → ( 𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎 ) ) | |
| 210 | 209 | adantl | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( 𝑢 ⊊ 𝑎 ↔ ∅ ⊊ 𝑎 ) ) |
| 211 | 0pss | ⊢ ( ∅ ⊊ 𝑎 ↔ 𝑎 ≠ ∅ ) | |
| 212 | 210 211 | bitrdi | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( 𝑢 ⊊ 𝑎 ↔ 𝑎 ≠ ∅ ) ) |
| 213 | 208 212 | sylibrd | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( 𝑋 = ∪ 𝑎 → 𝑢 ⊊ 𝑎 ) ) |
| 214 | 196 213 | nsyld | ⊢ ( ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ∧ 𝑢 = ∅ ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 215 | 214 | ex | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( 𝑢 = ∅ → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) ) |
| 216 | 181 215 | jaod | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( ( ( 𝑢 ∈ 𝒫 ( fi ‘ 𝑥 ) ∧ ( 𝑎 ⊆ 𝑢 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑢 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) ) ∨ 𝑢 = ∅ ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) ) |
| 217 | 13 216 | biimtrid | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) → ( ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) ) |
| 218 | 217 | rexlimdv | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ( ∃ 𝑢 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ∀ 𝑣 ∈ ( { 𝑧 ∈ 𝒫 ( fi ‘ 𝑥 ) ∣ ( 𝑎 ⊆ 𝑧 ∧ ∀ 𝑏 ∈ ( 𝒫 𝑧 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) } ∪ { ∅ } ) ¬ 𝑢 ⊊ 𝑣 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 219 | 3 218 | mpd | ⊢ ( ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 ) → ¬ 𝑋 = ∪ 𝑎 ) |
| 220 | 219 | ex | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( ∀ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) ¬ 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 221 | 2 220 | biimtrrid | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( ¬ ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 → ¬ 𝑋 = ∪ 𝑎 ) ) |
| 222 | 221 | con4d | ⊢ ( ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) ∧ ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ∧ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ) → ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) |
| 223 | 222 | 3exp | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ( 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) → ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) ) |
| 224 | 223 | ralrimdv | ⊢ ( 𝐽 = ( topGen ‘ ( fi ‘ 𝑥 ) ) → ( ∀ 𝑐 ∈ 𝒫 𝑥 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) → ∀ 𝑎 ∈ 𝒫 ( fi ‘ 𝑥 ) ( 𝑋 = ∪ 𝑎 → ∃ 𝑏 ∈ ( 𝒫 𝑎 ∩ Fin ) 𝑋 = ∪ 𝑏 ) ) ) |