This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. This is the indexed union version of unifi . Note that B depends on x , i.e. can be thought of as B ( x ) . (Contributed by NM, 23-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀ 𝑥 ∈ ∅ 𝐵 ∈ Fin ) ) | |
| 2 | iuneq1 | ⊢ ( 𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵 ) | |
| 3 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∅ ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑤 = ∅ → ( ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∅ ∈ Fin ) ) |
| 6 | 1 5 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ) ↔ ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin ) ) ) |
| 7 | raleq | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) ) | |
| 8 | iuneq1 | ⊢ ( 𝑤 = 𝑦 → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑤 = 𝑦 → ( ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ) ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) ) ) |
| 11 | raleq | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) | |
| 12 | iuneq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ) ↔ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) ) |
| 15 | raleq | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) ) | |
| 16 | iuneq1 | ⊢ ( 𝑤 = 𝐴 → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑤 = 𝐴 → ( ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) ) |
| 18 | 15 17 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑤 𝐵 ∈ Fin ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) ) ) |
| 19 | 0fi | ⊢ ∅ ∈ Fin | |
| 20 | 19 | a1i | ⊢ ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ Fin → ∅ ∈ Fin ) |
| 21 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 22 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) |
| 24 | 23 | imim1i | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) ) |
| 25 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) | |
| 26 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 27 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 28 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 29 | 26 27 28 | cbviun | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 = ∪ 𝑦 ∈ { 𝑧 } ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 30 | vex | ⊢ 𝑧 ∈ V | |
| 31 | csbeq1 | ⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 32 | 30 31 | iunxsn | ⊢ ∪ 𝑦 ∈ { 𝑧 } ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 33 | 29 32 | eqtri | ⊢ ∪ 𝑥 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 34 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 35 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 36 | 34 35 | sselii | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 37 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 38 | 37 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ Fin |
| 39 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ Fin ) ) |
| 41 | 38 40 | rspc | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ Fin ) ) |
| 42 | 36 41 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ Fin ) |
| 43 | 33 42 | eqeltrid | ⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∪ 𝑥 ∈ { 𝑧 } 𝐵 ∈ Fin ) |
| 44 | unfi | ⊢ ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ∈ Fin ) → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) ∈ Fin ) | |
| 45 | 43 44 | sylan2 | ⊢ ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪ 𝑥 ∈ { 𝑧 } 𝐵 ) ∈ Fin ) |
| 46 | 25 45 | eqeltrid | ⊢ ( ( ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) |
| 47 | 46 | expcom | ⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ( ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) |
| 48 | 24 47 | sylcom | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) |
| 49 | 48 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ Fin ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin → ∪ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ Fin ) ) ) |
| 50 | 6 10 14 18 20 49 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |