This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem elint2

Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999)

Ref Expression
Hypothesis elint2.1 𝐴 ∈ V
Assertion elint2 ( 𝐴 𝐵 ↔ ∀ 𝑥𝐵 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 elint2.1 𝐴 ∈ V
2 1 elint ( 𝐴 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
3 df-ral ( ∀ 𝑥𝐵 𝐴𝑥 ↔ ∀ 𝑥 ( 𝑥𝐵𝐴𝑥 ) )
4 2 3 bitr4i ( 𝐴 𝐵 ↔ ∀ 𝑥𝐵 𝐴𝑥 )