This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shftmbl | |- ( ( A e. dom vol /\ B e. RR ) -> { x e. RR | ( x - B ) e. A } e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { x e. RR | ( x - B ) e. A } C_ RR |
|
| 2 | 1 | a1i | |- ( ( A e. dom vol /\ B e. RR ) -> { x e. RR | ( x - B ) e. A } C_ RR ) |
| 3 | elpwi | |- ( y e. ~P RR -> y C_ RR ) |
|
| 4 | simpll | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> A e. dom vol ) |
|
| 5 | ssrab2 | |- { z e. RR | ( z - -u B ) e. y } C_ RR |
|
| 6 | 5 | a1i | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> { z e. RR | ( z - -u B ) e. y } C_ RR ) |
| 7 | simprl | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> y C_ RR ) |
|
| 8 | simplr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> B e. RR ) |
|
| 9 | 8 | renegcld | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> -u B e. RR ) |
| 10 | eqidd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> { z e. RR | ( z - -u B ) e. y } = { z e. RR | ( z - -u B ) e. y } ) |
|
| 11 | 7 9 10 | ovolshft | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` y ) = ( vol* ` { z e. RR | ( z - -u B ) e. y } ) ) |
| 12 | simprr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` y ) e. RR ) |
|
| 13 | 11 12 | eqeltrrd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` { z e. RR | ( z - -u B ) e. y } ) e. RR ) |
| 14 | mblsplit | |- ( ( A e. dom vol /\ { z e. RR | ( z - -u B ) e. y } C_ RR /\ ( vol* ` { z e. RR | ( z - -u B ) e. y } ) e. RR ) -> ( vol* ` { z e. RR | ( z - -u B ) e. y } ) = ( ( vol* ` ( { z e. RR | ( z - -u B ) e. y } i^i A ) ) + ( vol* ` ( { z e. RR | ( z - -u B ) e. y } \ A ) ) ) ) |
|
| 15 | 4 6 13 14 | syl3anc | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` { z e. RR | ( z - -u B ) e. y } ) = ( ( vol* ` ( { z e. RR | ( z - -u B ) e. y } i^i A ) ) + ( vol* ` ( { z e. RR | ( z - -u B ) e. y } \ A ) ) ) ) |
| 16 | inss1 | |- ( y i^i { x e. RR | ( x - B ) e. A } ) C_ y |
|
| 17 | 16 7 | sstrid | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( y i^i { x e. RR | ( x - B ) e. A } ) C_ RR ) |
| 18 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 19 | 4 18 | syl | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> A C_ RR ) |
| 20 | eqidd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> { x e. RR | ( x - B ) e. A } = { x e. RR | ( x - B ) e. A } ) |
|
| 21 | 19 8 20 | shft2rab | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> A = { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) |
| 22 | 21 | ineq2d | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( { z e. RR | ( z - -u B ) e. y } i^i A ) = ( { z e. RR | ( z - -u B ) e. y } i^i { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) ) |
| 23 | inrab | |- ( { z e. RR | ( z - -u B ) e. y } i^i { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) = { z e. RR | ( ( z - -u B ) e. y /\ ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) } |
|
| 24 | elin | |- ( ( z - -u B ) e. ( y i^i { x e. RR | ( x - B ) e. A } ) <-> ( ( z - -u B ) e. y /\ ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) ) |
|
| 25 | 24 | rabbii | |- { z e. RR | ( z - -u B ) e. ( y i^i { x e. RR | ( x - B ) e. A } ) } = { z e. RR | ( ( z - -u B ) e. y /\ ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) } |
| 26 | 23 25 | eqtr4i | |- ( { z e. RR | ( z - -u B ) e. y } i^i { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) = { z e. RR | ( z - -u B ) e. ( y i^i { x e. RR | ( x - B ) e. A } ) } |
| 27 | 22 26 | eqtrdi | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( { z e. RR | ( z - -u B ) e. y } i^i A ) = { z e. RR | ( z - -u B ) e. ( y i^i { x e. RR | ( x - B ) e. A } ) } ) |
| 28 | 17 9 27 | ovolshft | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) = ( vol* ` ( { z e. RR | ( z - -u B ) e. y } i^i A ) ) ) |
| 29 | 7 | ssdifssd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( y \ { x e. RR | ( x - B ) e. A } ) C_ RR ) |
| 30 | 21 | difeq2d | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( { z e. RR | ( z - -u B ) e. y } \ A ) = ( { z e. RR | ( z - -u B ) e. y } \ { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) ) |
| 31 | difrab | |- ( { z e. RR | ( z - -u B ) e. y } \ { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) = { z e. RR | ( ( z - -u B ) e. y /\ -. ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) } |
|
| 32 | eldif | |- ( ( z - -u B ) e. ( y \ { x e. RR | ( x - B ) e. A } ) <-> ( ( z - -u B ) e. y /\ -. ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) ) |
|
| 33 | 32 | rabbii | |- { z e. RR | ( z - -u B ) e. ( y \ { x e. RR | ( x - B ) e. A } ) } = { z e. RR | ( ( z - -u B ) e. y /\ -. ( z - -u B ) e. { x e. RR | ( x - B ) e. A } ) } |
| 34 | 31 33 | eqtr4i | |- ( { z e. RR | ( z - -u B ) e. y } \ { z e. RR | ( z - -u B ) e. { x e. RR | ( x - B ) e. A } } ) = { z e. RR | ( z - -u B ) e. ( y \ { x e. RR | ( x - B ) e. A } ) } |
| 35 | 30 34 | eqtrdi | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( { z e. RR | ( z - -u B ) e. y } \ A ) = { z e. RR | ( z - -u B ) e. ( y \ { x e. RR | ( x - B ) e. A } ) } ) |
| 36 | 29 9 35 | ovolshft | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) = ( vol* ` ( { z e. RR | ( z - -u B ) e. y } \ A ) ) ) |
| 37 | 28 36 | oveq12d | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) = ( ( vol* ` ( { z e. RR | ( z - -u B ) e. y } i^i A ) ) + ( vol* ` ( { z e. RR | ( z - -u B ) e. y } \ A ) ) ) ) |
| 38 | 15 11 37 | 3eqtr4d | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y C_ RR /\ ( vol* ` y ) e. RR ) ) -> ( vol* ` y ) = ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) ) |
| 39 | 38 | expr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ y C_ RR ) -> ( ( vol* ` y ) e. RR -> ( vol* ` y ) = ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) ) ) |
| 40 | 3 39 | sylan2 | |- ( ( ( A e. dom vol /\ B e. RR ) /\ y e. ~P RR ) -> ( ( vol* ` y ) e. RR -> ( vol* ` y ) = ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) ) ) |
| 41 | 40 | ralrimiva | |- ( ( A e. dom vol /\ B e. RR ) -> A. y e. ~P RR ( ( vol* ` y ) e. RR -> ( vol* ` y ) = ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) ) ) |
| 42 | ismbl | |- ( { x e. RR | ( x - B ) e. A } e. dom vol <-> ( { x e. RR | ( x - B ) e. A } C_ RR /\ A. y e. ~P RR ( ( vol* ` y ) e. RR -> ( vol* ` y ) = ( ( vol* ` ( y i^i { x e. RR | ( x - B ) e. A } ) ) + ( vol* ` ( y \ { x e. RR | ( x - B ) e. A } ) ) ) ) ) ) |
|
| 43 | 2 41 42 | sylanbrc | |- ( ( A e. dom vol /\ B e. RR ) -> { x e. RR | ( x - B ) e. A } e. dom vol ) |