This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem flltp1

Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion flltp1
|- ( A e. RR -> A < ( ( |_ ` A ) + 1 ) )

Proof

Step Hyp Ref Expression
1 fllelt
 |-  ( A e. RR -> ( ( |_ ` A ) <_ A /\ A < ( ( |_ ` A ) + 1 ) ) )
2 1 simprd
 |-  ( A e. RR -> A < ( ( |_ ` A ) + 1 ) )