This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| ovolshft.2 | |- ( ph -> C e. RR ) |
||
| ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
||
| Assertion | ovolshft | |- ( ph -> ( vol* ` A ) = ( vol* ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolshft.2 | |- ( ph -> C e. RR ) |
|
| 3 | ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
|
| 4 | eqid | |- { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } = { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } |
|
| 5 | 1 2 3 4 | ovolshftlem2 | |- ( ph -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } C_ { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } ) |
| 6 | ssrab2 | |- { x e. RR | ( x - C ) e. A } C_ RR |
|
| 7 | 3 6 | eqsstrdi | |- ( ph -> B C_ RR ) |
| 8 | 2 | renegcld | |- ( ph -> -u C e. RR ) |
| 9 | 1 2 3 | shft2rab | |- ( ph -> A = { w e. RR | ( w - -u C ) e. B } ) |
| 10 | eqid | |- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 11 | 7 8 9 10 | ovolshftlem2 | |- ( ph -> { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } C_ { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } ) |
| 12 | 5 11 | eqssd | |- ( ph -> { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } ) |
| 13 | 12 | infeq1d | |- ( ph -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) = inf ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } , RR* , < ) ) |
| 14 | 10 | ovolval | |- ( A C_ RR -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 15 | 1 14 | syl | |- ( ph -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 16 | 4 | ovolval | |- ( B C_ RR -> ( vol* ` B ) = inf ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } , RR* , < ) ) |
| 17 | 7 16 | syl | |- ( ph -> ( vol* ` B ) = inf ( { z e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( B C_ U. ran ( (,) o. g ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. g ) ) , RR* , < ) ) } , RR* , < ) ) |
| 18 | 13 15 17 | 3eqtr4d | |- ( ph -> ( vol* ` A ) = ( vol* ` B ) ) |