This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005) (Revised by Mario Carneiro, 16-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ser1const | |- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( j = 1 -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) ) |
|
| 2 | oveq1 | |- ( j = 1 -> ( j x. A ) = ( 1 x. A ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( j = 1 -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) ) |
| 4 | 3 | imbi2d | |- ( j = 1 -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) ) ) |
| 5 | fveq2 | |- ( j = k -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` k ) ) |
|
| 6 | oveq1 | |- ( j = k -> ( j x. A ) = ( k x. A ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( j = k -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) ) |
| 8 | 7 | imbi2d | |- ( j = k -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) ) ) |
| 9 | fveq2 | |- ( j = ( k + 1 ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) ) |
|
| 10 | oveq1 | |- ( j = ( k + 1 ) -> ( j x. A ) = ( ( k + 1 ) x. A ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) |
| 12 | 11 | imbi2d | |- ( j = ( k + 1 ) -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
| 13 | fveq2 | |- ( j = N -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( seq 1 ( + , ( NN X. { A } ) ) ` N ) ) |
|
| 14 | oveq1 | |- ( j = N -> ( j x. A ) = ( N x. A ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( j = N -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) <-> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) |
| 16 | 15 | imbi2d | |- ( j = N -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` j ) = ( j x. A ) ) <-> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) ) |
| 17 | 1z | |- 1 e. ZZ |
|
| 18 | 1nn | |- 1 e. NN |
|
| 19 | fvconst2g | |- ( ( A e. CC /\ 1 e. NN ) -> ( ( NN X. { A } ) ` 1 ) = A ) |
|
| 20 | 18 19 | mpan2 | |- ( A e. CC -> ( ( NN X. { A } ) ` 1 ) = A ) |
| 21 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 22 | 20 21 | eqtr4d | |- ( A e. CC -> ( ( NN X. { A } ) ` 1 ) = ( 1 x. A ) ) |
| 23 | 17 22 | seq1i | |- ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` 1 ) = ( 1 x. A ) ) |
| 24 | oveq1 | |- ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) = ( ( k x. A ) + A ) ) |
|
| 25 | seqp1 | |- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
|
| 26 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 27 | 25 26 | eleq2s | |- ( k e. NN -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
| 28 | 27 | adantl | |- ( ( A e. CC /\ k e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) ) |
| 29 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 30 | fvconst2g | |- ( ( A e. CC /\ ( k + 1 ) e. NN ) -> ( ( NN X. { A } ) ` ( k + 1 ) ) = A ) |
|
| 31 | 29 30 | sylan2 | |- ( ( A e. CC /\ k e. NN ) -> ( ( NN X. { A } ) ` ( k + 1 ) ) = A ) |
| 32 | 31 | oveq2d | |- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + ( ( NN X. { A } ) ` ( k + 1 ) ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) ) |
| 33 | 28 32 | eqtrd | |- ( ( A e. CC /\ k e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) ) |
| 34 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 35 | id | |- ( A e. CC -> A e. CC ) |
|
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | adddir | |- ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
|
| 38 | 36 37 | mp3an2 | |- ( ( k e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
| 39 | 34 35 38 | syl2anr | |- ( ( A e. CC /\ k e. NN ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
| 40 | 21 | adantr | |- ( ( A e. CC /\ k e. NN ) -> ( 1 x. A ) = A ) |
| 41 | 40 | oveq2d | |- ( ( A e. CC /\ k e. NN ) -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) |
| 42 | 39 41 | eqtrd | |- ( ( A e. CC /\ k e. NN ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) |
| 43 | 33 42 | eqeq12d | |- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) <-> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) + A ) = ( ( k x. A ) + A ) ) ) |
| 44 | 24 43 | imbitrrid | |- ( ( A e. CC /\ k e. NN ) -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) |
| 45 | 44 | expcom | |- ( k e. NN -> ( A e. CC -> ( ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
| 46 | 45 | a2d | |- ( k e. NN -> ( ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` k ) = ( k x. A ) ) -> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` ( k + 1 ) ) = ( ( k + 1 ) x. A ) ) ) ) |
| 47 | 4 8 12 16 23 46 | nnind | |- ( N e. NN -> ( A e. CC -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) ) |
| 48 | 47 | impcom | |- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( + , ( NN X. { A } ) ) ` N ) = ( N x. A ) ) |