This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
||
| vitali.3 | |- ( ph -> F Fn S ) |
||
| vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
||
| vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
||
| vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
||
| vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
||
| Assertion | vitalilem3 | |- ( ph -> Disj_ m e. NN ( T ` m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| 2 | vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
|
| 3 | vitali.3 | |- ( ph -> F Fn S ) |
|
| 4 | vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
|
| 5 | vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 6 | vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
|
| 7 | vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
|
| 8 | simprlr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` m ) ) |
|
| 9 | simprll | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m e. NN ) |
|
| 10 | fveq2 | |- ( n = m -> ( G ` n ) = ( G ` m ) ) |
|
| 11 | 10 | oveq2d | |- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
| 12 | 11 | eleq1d | |- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
| 13 | 12 | rabbidv | |- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 14 | reex | |- RR e. _V |
|
| 15 | 14 | rabex | |- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
| 16 | 13 6 15 | fvmpt | |- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 17 | 9 16 | syl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 18 | 8 17 | eleqtrd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 19 | oveq1 | |- ( s = w -> ( s - ( G ` m ) ) = ( w - ( G ` m ) ) ) |
|
| 20 | 19 | eleq1d | |- ( s = w -> ( ( s - ( G ` m ) ) e. ran F <-> ( w - ( G ` m ) ) e. ran F ) ) |
| 21 | 20 | elrab | |- ( w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) |
| 22 | 18 21 | sylib | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) |
| 23 | 22 | simpld | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. RR ) |
| 24 | 23 | recnd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. CC ) |
| 25 | f1of | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 26 | 5 25 | syl | |- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 27 | inss1 | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
|
| 28 | fss | |- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ ) -> G : NN --> QQ ) |
|
| 29 | 26 27 28 | sylancl | |- ( ph -> G : NN --> QQ ) |
| 30 | 29 | adantr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN --> QQ ) |
| 31 | 30 9 | ffvelcdmd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. QQ ) |
| 32 | qcn | |- ( ( G ` m ) e. QQ -> ( G ` m ) e. CC ) |
|
| 33 | 31 32 | syl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. CC ) |
| 34 | simprrl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> k e. NN ) |
|
| 35 | 30 34 | ffvelcdmd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. QQ ) |
| 36 | qcn | |- ( ( G ` k ) e. QQ -> ( G ` k ) e. CC ) |
|
| 37 | 35 36 | syl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. CC ) |
| 38 | 1 | vitalilem1 | |- .~ Er ( 0 [,] 1 ) |
| 39 | 38 | a1i | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> .~ Er ( 0 [,] 1 ) ) |
| 40 | 1 2 3 4 5 6 7 | vitalilem2 | |- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
| 41 | 40 | simp1d | |- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
| 42 | 41 | adantr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ran F C_ ( 0 [,] 1 ) ) |
| 43 | 22 | simprd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ran F ) |
| 44 | 42 43 | sseldd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ( 0 [,] 1 ) ) |
| 45 | simprrr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` k ) ) |
|
| 46 | fveq2 | |- ( n = k -> ( G ` n ) = ( G ` k ) ) |
|
| 47 | 46 | oveq2d | |- ( n = k -> ( s - ( G ` n ) ) = ( s - ( G ` k ) ) ) |
| 48 | 47 | eleq1d | |- ( n = k -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` k ) ) e. ran F ) ) |
| 49 | 48 | rabbidv | |- ( n = k -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
| 50 | 14 | rabex | |- { s e. RR | ( s - ( G ` k ) ) e. ran F } e. _V |
| 51 | 49 6 50 | fvmpt | |- ( k e. NN -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
| 52 | 34 51 | syl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
| 53 | 45 52 | eleqtrd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
| 54 | oveq1 | |- ( s = w -> ( s - ( G ` k ) ) = ( w - ( G ` k ) ) ) |
|
| 55 | 54 | eleq1d | |- ( s = w -> ( ( s - ( G ` k ) ) e. ran F <-> ( w - ( G ` k ) ) e. ran F ) ) |
| 56 | 55 | elrab | |- ( w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) |
| 57 | 53 56 | sylib | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) |
| 58 | 57 | simprd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ran F ) |
| 59 | 42 58 | sseldd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) |
| 60 | 24 33 37 | nnncan1d | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) = ( ( G ` k ) - ( G ` m ) ) ) |
| 61 | qsubcl | |- ( ( ( G ` k ) e. QQ /\ ( G ` m ) e. QQ ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) |
|
| 62 | 35 31 61 | syl2anc | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) |
| 63 | 60 62 | eqeltrd | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) |
| 64 | oveq12 | |- ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( x - y ) = ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) ) |
|
| 65 | 64 | eleq1d | |- ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( ( x - y ) e. QQ <-> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) |
| 66 | 65 1 | brab2a | |- ( ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) <-> ( ( ( w - ( G ` m ) ) e. ( 0 [,] 1 ) /\ ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) /\ ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) |
| 67 | 44 59 63 66 | syl21anbrc | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) ) |
| 68 | 39 67 | erthi | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> [ ( w - ( G ` m ) ) ] .~ = [ ( w - ( G ` k ) ) ] .~ ) |
| 69 | 68 | fveq2d | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) |
| 70 | eceq1 | |- ( z = ( w - ( G ` m ) ) -> [ z ] .~ = [ ( w - ( G ` m ) ) ] .~ ) |
|
| 71 | 70 | fveq2d | |- ( z = ( w - ( G ` m ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` m ) ) ] .~ ) ) |
| 72 | id | |- ( z = ( w - ( G ` m ) ) -> z = ( w - ( G ` m ) ) ) |
|
| 73 | 71 72 | eqeq12d | |- ( z = ( w - ( G ` m ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) ) |
| 74 | fveq2 | |- ( [ v ] .~ = w -> ( F ` [ v ] .~ ) = ( F ` w ) ) |
|
| 75 | 74 | eceq1d | |- ( [ v ] .~ = w -> [ ( F ` [ v ] .~ ) ] .~ = [ ( F ` w ) ] .~ ) |
| 76 | 75 | fveq2d | |- ( [ v ] .~ = w -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) |
| 77 | 76 74 | eqeq12d | |- ( [ v ] .~ = w -> ( ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
| 78 | 38 | a1i | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> .~ Er ( 0 [,] 1 ) ) |
| 79 | simpr | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) |
|
| 80 | erdm | |- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
|
| 81 | 38 80 | ax-mp | |- dom .~ = ( 0 [,] 1 ) |
| 82 | 81 | eleq2i | |- ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) |
| 83 | ecdmn0 | |- ( v e. dom .~ <-> [ v ] .~ =/= (/) ) |
|
| 84 | 82 83 | bitr3i | |- ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) |
| 85 | 79 84 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) |
| 86 | neeq1 | |- ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) |
|
| 87 | fveq2 | |- ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) |
|
| 88 | id | |- ( z = [ v ] .~ -> z = [ v ] .~ ) |
|
| 89 | 87 88 | eleq12d | |- ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
| 90 | 86 89 | imbi12d | |- ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) |
| 91 | 4 | adantr | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
| 92 | ovex | |- ( 0 [,] 1 ) e. _V |
|
| 93 | erex | |- ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) |
|
| 94 | 38 92 93 | mp2 | |- .~ e. _V |
| 95 | 94 | ecelqsi | |- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
| 96 | 95 2 | eleqtrrdi | |- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. S ) |
| 97 | 96 | adantl | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) |
| 98 | 90 91 97 | rspcdva | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
| 99 | 85 98 | mpd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) |
| 100 | fvex | |- ( F ` [ v ] .~ ) e. _V |
|
| 101 | vex | |- v e. _V |
|
| 102 | 100 101 | elec | |- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) |
| 103 | 99 102 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v .~ ( F ` [ v ] .~ ) ) |
| 104 | 78 103 | erthi | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ = [ ( F ` [ v ] .~ ) ] .~ ) |
| 105 | 104 | eqcomd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ ( F ` [ v ] .~ ) ] .~ = [ v ] .~ ) |
| 106 | 105 | fveq2d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) ) |
| 107 | 2 77 106 | ectocld | |- ( ( ph /\ w e. S ) -> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) |
| 108 | 107 | ralrimiva | |- ( ph -> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) |
| 109 | eceq1 | |- ( z = ( F ` w ) -> [ z ] .~ = [ ( F ` w ) ] .~ ) |
|
| 110 | 109 | fveq2d | |- ( z = ( F ` w ) -> ( F ` [ z ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) |
| 111 | id | |- ( z = ( F ` w ) -> z = ( F ` w ) ) |
|
| 112 | 110 111 | eqeq12d | |- ( z = ( F ` w ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
| 113 | 112 | ralrn | |- ( F Fn S -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
| 114 | 3 113 | syl | |- ( ph -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
| 115 | 108 114 | mpbird | |- ( ph -> A. z e. ran F ( F ` [ z ] .~ ) = z ) |
| 116 | 115 | adantr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> A. z e. ran F ( F ` [ z ] .~ ) = z ) |
| 117 | 73 116 43 | rspcdva | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) |
| 118 | eceq1 | |- ( z = ( w - ( G ` k ) ) -> [ z ] .~ = [ ( w - ( G ` k ) ) ] .~ ) |
|
| 119 | 118 | fveq2d | |- ( z = ( w - ( G ` k ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) |
| 120 | id | |- ( z = ( w - ( G ` k ) ) -> z = ( w - ( G ` k ) ) ) |
|
| 121 | 119 120 | eqeq12d | |- ( z = ( w - ( G ` k ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) ) |
| 122 | 121 116 58 | rspcdva | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) |
| 123 | 69 117 122 | 3eqtr3d | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) = ( w - ( G ` k ) ) ) |
| 124 | 24 33 37 123 | subcand | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) = ( G ` k ) ) |
| 125 | 5 | adantr | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 126 | f1of1 | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 127 | 125 126 | syl | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 128 | f1fveq | |- ( ( G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( m e. NN /\ k e. NN ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) |
|
| 129 | 127 9 34 128 | syl12anc | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) |
| 130 | 124 129 | mpbid | |- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m = k ) |
| 131 | 130 | ex | |- ( ph -> ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
| 132 | 131 | alrimivv | |- ( ph -> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
| 133 | eleq1w | |- ( m = k -> ( m e. NN <-> k e. NN ) ) |
|
| 134 | fveq2 | |- ( m = k -> ( T ` m ) = ( T ` k ) ) |
|
| 135 | 134 | eleq2d | |- ( m = k -> ( w e. ( T ` m ) <-> w e. ( T ` k ) ) ) |
| 136 | 133 135 | anbi12d | |- ( m = k -> ( ( m e. NN /\ w e. ( T ` m ) ) <-> ( k e. NN /\ w e. ( T ` k ) ) ) ) |
| 137 | 136 | mo4 | |- ( E* m ( m e. NN /\ w e. ( T ` m ) ) <-> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
| 138 | 132 137 | sylibr | |- ( ph -> E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
| 139 | 138 | alrimiv | |- ( ph -> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
| 140 | dfdisj2 | |- ( Disj_ m e. NN ( T ` m ) <-> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
|
| 141 | 139 140 | sylibr | |- ( ph -> Disj_ m e. NN ( T ` m ) ) |