This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolicc | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( A [,] B ) C_ RR ) |
| 3 | ovolcl | |- ( ( A [,] B ) C_ RR -> ( vol* ` ( A [,] B ) ) e. RR* ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR* ) |
| 5 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
|
| 6 | simp1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR ) |
|
| 7 | 5 6 | resubcld | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
| 8 | 7 | rexrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) e. RR* ) |
| 9 | simp3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
|
| 10 | eqeq1 | |- ( m = n -> ( m = 1 <-> n = 1 ) ) |
|
| 11 | 10 | ifbid | |- ( m = n -> if ( m = 1 , <. A , B >. , <. 0 , 0 >. ) = if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 12 | 11 | cbvmptv | |- ( m e. NN |-> if ( m = 1 , <. A , B >. , <. 0 , 0 >. ) ) = ( n e. NN |-> if ( n = 1 , <. A , B >. , <. 0 , 0 >. ) ) |
| 13 | 6 5 9 12 | ovolicc1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) <_ ( B - A ) ) |
| 14 | eqeq1 | |- ( z = y -> ( z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <-> y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
|
| 15 | 14 | anbi2d | |- ( z = y -> ( ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 16 | 15 | rexbidv | |- ( z = y -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 17 | 16 | cbvrabv | |- { z e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ z = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( ( A [,] B ) C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
| 18 | 6 5 9 17 | ovolicc2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B - A ) <_ ( vol* ` ( A [,] B ) ) ) |
| 19 | 4 8 13 18 | xrletrid | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |