This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
||
| vitali.3 | |- ( ph -> F Fn S ) |
||
| vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
||
| vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
||
| vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
||
| vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
||
| Assertion | vitalilem5 | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| 2 | vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
|
| 3 | vitali.3 | |- ( ph -> F Fn S ) |
|
| 4 | vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
|
| 5 | vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 6 | vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
|
| 7 | vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
|
| 8 | 0lt1 | |- 0 < 1 |
|
| 9 | 0re | |- 0 e. RR |
|
| 10 | 1re | |- 1 e. RR |
|
| 11 | 0le1 | |- 0 <_ 1 |
|
| 12 | ovolicc | |- ( ( 0 e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) ) |
|
| 13 | 9 10 11 12 | mp3an | |- ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) |
| 14 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 15 | 13 14 | eqtri | |- ( vol* ` ( 0 [,] 1 ) ) = 1 |
| 16 | 8 15 | breqtrri | |- 0 < ( vol* ` ( 0 [,] 1 ) ) |
| 17 | 15 10 | eqeltri | |- ( vol* ` ( 0 [,] 1 ) ) e. RR |
| 18 | 9 17 | ltnlei | |- ( 0 < ( vol* ` ( 0 [,] 1 ) ) <-> -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) |
| 19 | 16 18 | mpbi | |- -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 |
| 20 | 1 2 3 4 5 6 7 | vitalilem2 | |- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
| 21 | 20 | simp2d | |- ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) |
| 22 | 1 | vitalilem1 | |- .~ Er ( 0 [,] 1 ) |
| 23 | erdm | |- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
|
| 24 | 22 23 | ax-mp | |- dom .~ = ( 0 [,] 1 ) |
| 25 | simpr | |- ( ( ph /\ z e. S ) -> z e. S ) |
|
| 26 | 25 2 | eleqtrdi | |- ( ( ph /\ z e. S ) -> z e. ( ( 0 [,] 1 ) /. .~ ) ) |
| 27 | elqsn0 | |- ( ( dom .~ = ( 0 [,] 1 ) /\ z e. ( ( 0 [,] 1 ) /. .~ ) ) -> z =/= (/) ) |
|
| 28 | 24 26 27 | sylancr | |- ( ( ph /\ z e. S ) -> z =/= (/) ) |
| 29 | 22 | a1i | |- ( ph -> .~ Er ( 0 [,] 1 ) ) |
| 30 | 29 | qsss | |- ( ph -> ( ( 0 [,] 1 ) /. .~ ) C_ ~P ( 0 [,] 1 ) ) |
| 31 | 2 30 | eqsstrid | |- ( ph -> S C_ ~P ( 0 [,] 1 ) ) |
| 32 | 31 | sselda | |- ( ( ph /\ z e. S ) -> z e. ~P ( 0 [,] 1 ) ) |
| 33 | 32 | elpwid | |- ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) |
| 34 | 33 | sseld | |- ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 35 | 28 34 | embantd | |- ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 36 | 35 | ralimdva | |- ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 37 | 4 36 | mpd | |- ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) |
| 38 | ffnfv | |- ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
|
| 39 | 3 37 38 | sylanbrc | |- ( ph -> F : S --> ( 0 [,] 1 ) ) |
| 40 | 39 | frnd | |- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
| 41 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 42 | 40 41 | sstrdi | |- ( ph -> ran F C_ RR ) |
| 43 | reex | |- RR e. _V |
|
| 44 | 43 | elpw2 | |- ( ran F e. ~P RR <-> ran F C_ RR ) |
| 45 | 42 44 | sylibr | |- ( ph -> ran F e. ~P RR ) |
| 46 | 45 | anim1i | |- ( ( ph /\ -. ran F e. dom vol ) -> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
| 47 | eldif | |- ( ran F e. ( ~P RR \ dom vol ) <-> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
|
| 48 | 46 47 | sylibr | |- ( ( ph /\ -. ran F e. dom vol ) -> ran F e. ( ~P RR \ dom vol ) ) |
| 49 | 48 | ex | |- ( ph -> ( -. ran F e. dom vol -> ran F e. ( ~P RR \ dom vol ) ) ) |
| 50 | 7 49 | mt3d | |- ( ph -> ran F e. dom vol ) |
| 51 | f1of | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 52 | 5 51 | syl | |- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 53 | inss1 | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
|
| 54 | qssre | |- QQ C_ RR |
|
| 55 | 53 54 | sstri | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR |
| 56 | fss | |- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR ) -> G : NN --> RR ) |
|
| 57 | 52 55 56 | sylancl | |- ( ph -> G : NN --> RR ) |
| 58 | 57 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 59 | shftmbl | |- ( ( ran F e. dom vol /\ ( G ` n ) e. RR ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
|
| 60 | 50 58 59 | syl2an2r | |- ( ( ph /\ n e. NN ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
| 61 | 60 6 | fmptd | |- ( ph -> T : NN --> dom vol ) |
| 62 | 61 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( T ` m ) e. dom vol ) |
| 63 | 62 | ralrimiva | |- ( ph -> A. m e. NN ( T ` m ) e. dom vol ) |
| 64 | iunmbl | |- ( A. m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) e. dom vol ) |
|
| 65 | 63 64 | syl | |- ( ph -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 66 | mblss | |- ( U_ m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) C_ RR ) |
|
| 67 | 65 66 | syl | |- ( ph -> U_ m e. NN ( T ` m ) C_ RR ) |
| 68 | ovolss | |- ( ( ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ RR ) -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
|
| 69 | 21 67 68 | syl2anc | |- ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 70 | eqid | |- seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) |
|
| 71 | eqid | |- ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> ( vol* ` ( T ` m ) ) ) |
|
| 72 | mblss | |- ( ( T ` m ) e. dom vol -> ( T ` m ) C_ RR ) |
|
| 73 | 62 72 | syl | |- ( ( ph /\ m e. NN ) -> ( T ` m ) C_ RR ) |
| 74 | 1 2 3 4 5 6 7 | vitalilem4 | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) |
| 75 | 74 9 | eqeltrdi | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) e. RR ) |
| 76 | 74 | mpteq2dva | |- ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> 0 ) ) |
| 77 | fconstmpt | |- ( NN X. { 0 } ) = ( m e. NN |-> 0 ) |
|
| 78 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 79 | 78 | xpeq1i | |- ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
| 80 | 77 79 | eqtr3i | |- ( m e. NN |-> 0 ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
| 81 | 76 80 | eqtrdi | |- ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( ( ZZ>= ` 1 ) X. { 0 } ) ) |
| 82 | 81 | seqeq3d | |- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) |
| 83 | 1z | |- 1 e. ZZ |
|
| 84 | serclim0 | |- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
|
| 85 | 83 84 | ax-mp | |- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 |
| 86 | 82 85 | eqbrtrdi | |- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 ) |
| 87 | seqex | |- seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. _V |
|
| 88 | c0ex | |- 0 e. _V |
|
| 89 | 87 88 | breldm | |- ( seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) |
| 90 | 86 89 | syl | |- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) |
| 91 | 70 71 73 75 90 | ovoliun2 | |- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ sum_ m e. NN ( vol* ` ( T ` m ) ) ) |
| 92 | 74 | sumeq2dv | |- ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = sum_ m e. NN 0 ) |
| 93 | 78 | eqimssi | |- NN C_ ( ZZ>= ` 1 ) |
| 94 | 93 | orci | |- ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) |
| 95 | sumz | |- ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ m e. NN 0 = 0 ) |
|
| 96 | 94 95 | ax-mp | |- sum_ m e. NN 0 = 0 |
| 97 | 92 96 | eqtrdi | |- ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = 0 ) |
| 98 | 91 97 | breqtrd | |- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 ) |
| 99 | ovolge0 | |- ( U_ m e. NN ( T ` m ) C_ RR -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
|
| 100 | 67 99 | syl | |- ( ph -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 101 | ovolcl | |- ( U_ m e. NN ( T ` m ) C_ RR -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
|
| 102 | 67 101 | syl | |- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 103 | 0xr | |- 0 e. RR* |
|
| 104 | xrletri3 | |- ( ( ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) |
|
| 105 | 102 103 104 | sylancl | |- ( ph -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) |
| 106 | 98 100 105 | mpbir2and | |- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) = 0 ) |
| 107 | 69 106 | breqtrd | |- ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) |
| 108 | 19 107 | mto | |- -. ph |