This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliun.1 | |- S = seq 1 ( + , G ) |
|
| voliun.2 | |- G = ( n e. NN |-> ( vol ` A ) ) |
||
| Assertion | voliun | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( vol ` U_ n e. NN A ) = sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliun.1 | |- S = seq 1 ( + , G ) |
|
| 2 | voliun.2 | |- G = ( n e. NN |-> ( vol ` A ) ) |
|
| 3 | simpl | |- ( ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A e. dom vol ) |
|
| 4 | 3 | ralimi | |- ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A. n e. NN A e. dom vol ) |
| 5 | 4 | adantr | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> A. n e. NN A e. dom vol ) |
| 6 | eqid | |- ( n e. NN |-> A ) = ( n e. NN |-> A ) |
|
| 7 | 6 | fmpt | |- ( A. n e. NN A e. dom vol <-> ( n e. NN |-> A ) : NN --> dom vol ) |
| 8 | 5 7 | sylib | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( n e. NN |-> A ) : NN --> dom vol ) |
| 9 | 6 | fvmpt2 | |- ( ( n e. NN /\ A e. dom vol ) -> ( ( n e. NN |-> A ) ` n ) = A ) |
| 10 | 9 | adantrr | |- ( ( n e. NN /\ ( A e. dom vol /\ ( vol ` A ) e. RR ) ) -> ( ( n e. NN |-> A ) ` n ) = A ) |
| 11 | 10 | ralimiaa | |- ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A. n e. NN ( ( n e. NN |-> A ) ` n ) = A ) |
| 12 | disjeq2 | |- ( A. n e. NN ( ( n e. NN |-> A ) ` n ) = A -> ( Disj_ n e. NN ( ( n e. NN |-> A ) ` n ) <-> Disj_ n e. NN A ) ) |
|
| 13 | 11 12 | syl | |- ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) -> ( Disj_ n e. NN ( ( n e. NN |-> A ) ` n ) <-> Disj_ n e. NN A ) ) |
| 14 | 13 | biimpar | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> Disj_ n e. NN ( ( n e. NN |-> A ) ` n ) ) |
| 15 | nfcv | |- F/_ i ( ( n e. NN |-> A ) ` n ) |
|
| 16 | nffvmpt1 | |- F/_ n ( ( n e. NN |-> A ) ` i ) |
|
| 17 | fveq2 | |- ( n = i -> ( ( n e. NN |-> A ) ` n ) = ( ( n e. NN |-> A ) ` i ) ) |
|
| 18 | 15 16 17 | cbvdisj | |- ( Disj_ n e. NN ( ( n e. NN |-> A ) ` n ) <-> Disj_ i e. NN ( ( n e. NN |-> A ) ` i ) ) |
| 19 | 14 18 | sylib | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> Disj_ i e. NN ( ( n e. NN |-> A ) ` i ) ) |
| 20 | eqid | |- ( m e. NN |-> ( vol* ` ( x i^i ( ( n e. NN |-> A ) ` m ) ) ) ) = ( m e. NN |-> ( vol* ` ( x i^i ( ( n e. NN |-> A ) ` m ) ) ) ) |
|
| 21 | eqid | |- seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) |
|
| 22 | nfcv | |- F/_ m ( vol ` ( ( n e. NN |-> A ) ` n ) ) |
|
| 23 | nfcv | |- F/_ n vol |
|
| 24 | nffvmpt1 | |- F/_ n ( ( n e. NN |-> A ) ` m ) |
|
| 25 | 23 24 | nffv | |- F/_ n ( vol ` ( ( n e. NN |-> A ) ` m ) ) |
| 26 | 2fveq3 | |- ( n = m -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` ( ( n e. NN |-> A ) ` m ) ) ) |
|
| 27 | 22 25 26 | cbvmpt | |- ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) = ( m e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` m ) ) ) |
| 28 | 9 | fveq2d | |- ( ( n e. NN /\ A e. dom vol ) -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` A ) ) |
| 29 | 28 | eleq1d | |- ( ( n e. NN /\ A e. dom vol ) -> ( ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR <-> ( vol ` A ) e. RR ) ) |
| 30 | 29 | biimprd | |- ( ( n e. NN /\ A e. dom vol ) -> ( ( vol ` A ) e. RR -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR ) ) |
| 31 | 30 | impr | |- ( ( n e. NN /\ ( A e. dom vol /\ ( vol ` A ) e. RR ) ) -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR ) |
| 32 | 31 | ralimiaa | |- ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR ) |
| 33 | 32 | adantr | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR ) |
| 34 | nfv | |- F/ i ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR |
|
| 35 | 23 16 | nffv | |- F/_ n ( vol ` ( ( n e. NN |-> A ) ` i ) ) |
| 36 | 35 | nfel1 | |- F/ n ( vol ` ( ( n e. NN |-> A ) ` i ) ) e. RR |
| 37 | 2fveq3 | |- ( n = i -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` ( ( n e. NN |-> A ) ` i ) ) ) |
|
| 38 | 37 | eleq1d | |- ( n = i -> ( ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR <-> ( vol ` ( ( n e. NN |-> A ) ` i ) ) e. RR ) ) |
| 39 | 34 36 38 | cbvralw | |- ( A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) e. RR <-> A. i e. NN ( vol ` ( ( n e. NN |-> A ) ` i ) ) e. RR ) |
| 40 | 33 39 | sylib | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> A. i e. NN ( vol ` ( ( n e. NN |-> A ) ` i ) ) e. RR ) |
| 41 | 8 19 20 21 27 40 | voliunlem3 | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( vol ` U. ran ( n e. NN |-> A ) ) = sup ( ran seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) , RR* , < ) ) |
| 42 | dfiun2g | |- ( A. n e. NN A e. dom vol -> U_ n e. NN A = U. { x | E. n e. NN x = A } ) |
|
| 43 | 5 42 | syl | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> U_ n e. NN A = U. { x | E. n e. NN x = A } ) |
| 44 | 6 | rnmpt | |- ran ( n e. NN |-> A ) = { x | E. n e. NN x = A } |
| 45 | 44 | unieqi | |- U. ran ( n e. NN |-> A ) = U. { x | E. n e. NN x = A } |
| 46 | 43 45 | eqtr4di | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> U_ n e. NN A = U. ran ( n e. NN |-> A ) ) |
| 47 | 46 | fveq2d | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( vol ` U_ n e. NN A ) = ( vol ` U. ran ( n e. NN |-> A ) ) ) |
| 48 | eqid | |- NN = NN |
|
| 49 | 28 | adantrr | |- ( ( n e. NN /\ ( A e. dom vol /\ ( vol ` A ) e. RR ) ) -> ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` A ) ) |
| 50 | 49 | ralimiaa | |- ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) -> A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` A ) ) |
| 51 | 50 | adantr | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` A ) ) |
| 52 | mpteq12 | |- ( ( NN = NN /\ A. n e. NN ( vol ` ( ( n e. NN |-> A ) ` n ) ) = ( vol ` A ) ) -> ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) = ( n e. NN |-> ( vol ` A ) ) ) |
|
| 53 | 48 51 52 | sylancr | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) = ( n e. NN |-> ( vol ` A ) ) ) |
| 54 | 2 53 | eqtr4id | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> G = ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) |
| 55 | 54 | seqeq3d | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) ) |
| 56 | 1 55 | eqtrid | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> S = seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) ) |
| 57 | 56 | rneqd | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ran S = ran seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) ) |
| 58 | 57 | supeq1d | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> sup ( ran S , RR* , < ) = sup ( ran seq 1 ( + , ( n e. NN |-> ( vol ` ( ( n e. NN |-> A ) ` n ) ) ) ) , RR* , < ) ) |
| 59 | 41 47 58 | 3eqtr4d | |- ( ( A. n e. NN ( A e. dom vol /\ ( vol ` A ) e. RR ) /\ Disj_ n e. NN A ) -> ( vol ` U_ n e. NN A ) = sup ( ran S , RR* , < ) ) |