This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trirecip . Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trireciplem.1 | |- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
|
| Assertion | trireciplem | |- seq 1 ( + , F ) ~~> 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trireciplem.1 | |- F = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 4 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 5 | nnex | |- NN e. _V |
|
| 6 | 5 | mptex | |- ( n e. NN |-> ( 1 / ( n + 1 ) ) ) e. _V |
| 7 | 6 | a1i | |- ( T. -> ( n e. NN |-> ( 1 / ( n + 1 ) ) ) e. _V ) |
| 8 | oveq1 | |- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
|
| 9 | 8 | oveq2d | |- ( n = k -> ( 1 / ( n + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
| 10 | eqid | |- ( n e. NN |-> ( 1 / ( n + 1 ) ) ) = ( n e. NN |-> ( 1 / ( n + 1 ) ) ) |
|
| 11 | ovex | |- ( 1 / ( k + 1 ) ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) = ( 1 / ( k + 1 ) ) ) |
| 13 | 12 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) = ( 1 / ( k + 1 ) ) ) |
| 14 | 2 3 4 3 7 13 | divcnvshft | |- ( T. -> ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ~~> 0 ) |
| 15 | seqex | |- seq 1 ( + , F ) e. _V |
|
| 16 | 15 | a1i | |- ( T. -> seq 1 ( + , F ) e. _V ) |
| 17 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 18 | 17 | adantl | |- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 19 | 18 | nnrecred | |- ( ( T. /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR ) |
| 20 | 19 | recnd | |- ( ( T. /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. CC ) |
| 21 | 13 20 | eqeltrd | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) e. CC ) |
| 22 | 13 | oveq2d | |- ( ( T. /\ k e. NN ) -> ( 1 - ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
| 23 | elfznn | |- ( j e. ( 1 ... k ) -> j e. NN ) |
|
| 24 | 23 | adantl | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. NN ) |
| 25 | 24 | nncnd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. CC ) |
| 26 | peano2cn | |- ( j e. CC -> ( j + 1 ) e. CC ) |
|
| 27 | 25 26 | syl | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) e. CC ) |
| 28 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 29 | 24 28 | syl | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) e. NN ) |
| 30 | 24 29 | nnmulcld | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) e. NN ) |
| 31 | 30 | nncnd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) e. CC ) |
| 32 | 30 | nnne0d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. ( j + 1 ) ) =/= 0 ) |
| 33 | 27 25 31 32 | divsubdird | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) - j ) / ( j x. ( j + 1 ) ) ) = ( ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) - ( j / ( j x. ( j + 1 ) ) ) ) ) |
| 34 | ax-1cn | |- 1 e. CC |
|
| 35 | pncan2 | |- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - j ) = 1 ) |
|
| 36 | 25 34 35 | sylancl | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) - j ) = 1 ) |
| 37 | 36 | oveq1d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) - j ) / ( j x. ( j + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 38 | 27 | mulridd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) x. 1 ) = ( j + 1 ) ) |
| 39 | 27 25 | mulcomd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) x. j ) = ( j x. ( j + 1 ) ) ) |
| 40 | 38 39 | oveq12d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) x. 1 ) / ( ( j + 1 ) x. j ) ) = ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) ) |
| 41 | 1cnd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> 1 e. CC ) |
|
| 42 | 24 | nnne0d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j =/= 0 ) |
| 43 | 29 | nnne0d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j + 1 ) =/= 0 ) |
| 44 | 41 25 27 42 43 | divcan5d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) x. 1 ) / ( ( j + 1 ) x. j ) ) = ( 1 / j ) ) |
| 45 | 40 44 | eqtr3d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) = ( 1 / j ) ) |
| 46 | 25 | mulridd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j x. 1 ) = j ) |
| 47 | 46 | oveq1d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j x. 1 ) / ( j x. ( j + 1 ) ) ) = ( j / ( j x. ( j + 1 ) ) ) ) |
| 48 | 41 27 25 43 42 | divcan5d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( j x. 1 ) / ( j x. ( j + 1 ) ) ) = ( 1 / ( j + 1 ) ) ) |
| 49 | 47 48 | eqtr3d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( j / ( j x. ( j + 1 ) ) ) = ( 1 / ( j + 1 ) ) ) |
| 50 | 45 49 | oveq12d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( ( j + 1 ) / ( j x. ( j + 1 ) ) ) - ( j / ( j x. ( j + 1 ) ) ) ) = ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
| 51 | 33 37 50 | 3eqtr3d | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) = ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
| 52 | 51 | sumeq2dv | |- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = sum_ j e. ( 1 ... k ) ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) ) |
| 53 | oveq2 | |- ( n = j -> ( 1 / n ) = ( 1 / j ) ) |
|
| 54 | oveq2 | |- ( n = ( j + 1 ) -> ( 1 / n ) = ( 1 / ( j + 1 ) ) ) |
|
| 55 | oveq2 | |- ( n = 1 -> ( 1 / n ) = ( 1 / 1 ) ) |
|
| 56 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 57 | 55 56 | eqtrdi | |- ( n = 1 -> ( 1 / n ) = 1 ) |
| 58 | oveq2 | |- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
|
| 59 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 60 | 59 | adantl | |- ( ( T. /\ k e. NN ) -> k e. ZZ ) |
| 61 | 18 2 | eleqtrdi | |- ( ( T. /\ k e. NN ) -> ( k + 1 ) e. ( ZZ>= ` 1 ) ) |
| 62 | elfznn | |- ( n e. ( 1 ... ( k + 1 ) ) -> n e. NN ) |
|
| 63 | 62 | adantl | |- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> n e. NN ) |
| 64 | 63 | nnrecred | |- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> ( 1 / n ) e. RR ) |
| 65 | 64 | recnd | |- ( ( ( T. /\ k e. NN ) /\ n e. ( 1 ... ( k + 1 ) ) ) -> ( 1 / n ) e. CC ) |
| 66 | 53 54 57 58 60 61 65 | telfsum | |- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( ( 1 / j ) - ( 1 / ( j + 1 ) ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
| 67 | 52 66 | eqtrd | |- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = ( 1 - ( 1 / ( k + 1 ) ) ) ) |
| 68 | id | |- ( n = j -> n = j ) |
|
| 69 | oveq1 | |- ( n = j -> ( n + 1 ) = ( j + 1 ) ) |
|
| 70 | 68 69 | oveq12d | |- ( n = j -> ( n x. ( n + 1 ) ) = ( j x. ( j + 1 ) ) ) |
| 71 | 70 | oveq2d | |- ( n = j -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 72 | ovex | |- ( 1 / ( j x. ( j + 1 ) ) ) e. _V |
|
| 73 | 71 1 72 | fvmpt | |- ( j e. NN -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 74 | 24 73 | syl | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( F ` j ) = ( 1 / ( j x. ( j + 1 ) ) ) ) |
| 75 | simpr | |- ( ( T. /\ k e. NN ) -> k e. NN ) |
|
| 76 | 75 2 | eleqtrdi | |- ( ( T. /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 77 | 30 | nnrecred | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. RR ) |
| 78 | 77 | recnd | |- ( ( ( T. /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( 1 / ( j x. ( j + 1 ) ) ) e. CC ) |
| 79 | 74 76 78 | fsumser | |- ( ( T. /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( 1 / ( j x. ( j + 1 ) ) ) = ( seq 1 ( + , F ) ` k ) ) |
| 80 | 22 67 79 | 3eqtr2rd | |- ( ( T. /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) = ( 1 - ( ( n e. NN |-> ( 1 / ( n + 1 ) ) ) ` k ) ) ) |
| 81 | 2 3 14 4 16 21 80 | climsubc2 | |- ( T. -> seq 1 ( + , F ) ~~> ( 1 - 0 ) ) |
| 82 | 81 | mptru | |- seq 1 ( + , F ) ~~> ( 1 - 0 ) |
| 83 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 84 | 82 83 | breqtri | |- seq 1 ( + , F ) ~~> 1 |