This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stirlinglem2.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| Assertion | stirlinglem2 | |- ( N e. NN -> ( A ` N ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem2.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 4 | nnrp | |- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
|
| 5 | 2 3 4 | 3syl | |- ( N e. NN -> ( ! ` N ) e. RR+ ) |
| 6 | 2rp | |- 2 e. RR+ |
|
| 7 | 6 | a1i | |- ( N e. NN -> 2 e. RR+ ) |
| 8 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 9 | 7 8 | rpmulcld | |- ( N e. NN -> ( 2 x. N ) e. RR+ ) |
| 10 | 9 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. RR+ ) |
| 11 | epr | |- _e e. RR+ |
|
| 12 | 11 | a1i | |- ( N e. NN -> _e e. RR+ ) |
| 13 | 8 12 | rpdivcld | |- ( N e. NN -> ( N / _e ) e. RR+ ) |
| 14 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 15 | 13 14 | rpexpcld | |- ( N e. NN -> ( ( N / _e ) ^ N ) e. RR+ ) |
| 16 | 10 15 | rpmulcld | |- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. RR+ ) |
| 17 | 5 16 | rpdivcld | |- ( N e. NN -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) |
| 18 | fveq2 | |- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
|
| 19 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 20 | 19 | fveq2d | |- ( n = k -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
| 21 | oveq1 | |- ( n = k -> ( n / _e ) = ( k / _e ) ) |
|
| 22 | id | |- ( n = k -> n = k ) |
|
| 23 | 21 22 | oveq12d | |- ( n = k -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
| 24 | 20 23 | oveq12d | |- ( n = k -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
| 25 | 18 24 | oveq12d | |- ( n = k -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 26 | 25 | cbvmptv | |- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 27 | 1 26 | eqtri | |- A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 28 | 27 | a1i | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) ) |
| 29 | simpr | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> k = N ) |
|
| 30 | 29 | fveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( ! ` k ) = ( ! ` N ) ) |
| 31 | 29 | oveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( 2 x. k ) = ( 2 x. N ) ) |
| 32 | 31 | fveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( sqrt ` ( 2 x. k ) ) = ( sqrt ` ( 2 x. N ) ) ) |
| 33 | 29 | oveq1d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( k / _e ) = ( N / _e ) ) |
| 34 | 33 29 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( ( k / _e ) ^ k ) = ( ( N / _e ) ^ N ) ) |
| 35 | 32 34 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) = ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) |
| 36 | 30 35 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ k = N ) -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 37 | simpl | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN ) |
|
| 38 | simpr | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) |
|
| 39 | 28 36 37 38 | fvmptd | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 40 | 17 39 | mpdan | |- ( N e. NN -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 41 | 40 17 | eqeltrd | |- ( N e. NN -> ( A ` N ) e. RR+ ) |