This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsumo.1 | |- ( k = j -> A = B ) |
|
| telfsumo.2 | |- ( k = ( j + 1 ) -> A = C ) |
||
| telfsumo.3 | |- ( k = M -> A = D ) |
||
| telfsumo.4 | |- ( k = N -> A = E ) |
||
| telfsumo.5 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| telfsumo.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| Assertion | telfsumo | |- ( ph -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsumo.1 | |- ( k = j -> A = B ) |
|
| 2 | telfsumo.2 | |- ( k = ( j + 1 ) -> A = C ) |
|
| 3 | telfsumo.3 | |- ( k = M -> A = D ) |
|
| 4 | telfsumo.4 | |- ( k = N -> A = E ) |
|
| 5 | telfsumo.5 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 6 | telfsumo.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 7 | sum0 | |- sum_ j e. (/) ( B - C ) = 0 |
|
| 8 | 3 | eleq1d | |- ( k = M -> ( A e. CC <-> D e. CC ) ) |
| 9 | 6 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 10 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 11 | 5 10 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 12 | 8 9 11 | rspcdva | |- ( ph -> D e. CC ) |
| 13 | 12 | adantr | |- ( ( ph /\ N = M ) -> D e. CC ) |
| 14 | 13 | subidd | |- ( ( ph /\ N = M ) -> ( D - D ) = 0 ) |
| 15 | 7 14 | eqtr4id | |- ( ( ph /\ N = M ) -> sum_ j e. (/) ( B - C ) = ( D - D ) ) |
| 16 | oveq2 | |- ( N = M -> ( M ..^ N ) = ( M ..^ M ) ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ N = M ) -> ( M ..^ N ) = ( M ..^ M ) ) |
| 18 | fzo0 | |- ( M ..^ M ) = (/) |
|
| 19 | 17 18 | eqtrdi | |- ( ( ph /\ N = M ) -> ( M ..^ N ) = (/) ) |
| 20 | 19 | sumeq1d | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B - C ) = sum_ j e. (/) ( B - C ) ) |
| 21 | eqeq1 | |- ( k = N -> ( k = M <-> N = M ) ) |
|
| 22 | 4 | eqeq1d | |- ( k = N -> ( A = D <-> E = D ) ) |
| 23 | 21 22 | imbi12d | |- ( k = N -> ( ( k = M -> A = D ) <-> ( N = M -> E = D ) ) ) |
| 24 | 23 3 | vtoclg | |- ( N e. ( ZZ>= ` M ) -> ( N = M -> E = D ) ) |
| 25 | 24 | imp | |- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> E = D ) |
| 26 | 5 25 | sylan | |- ( ( ph /\ N = M ) -> E = D ) |
| 27 | 26 | oveq2d | |- ( ( ph /\ N = M ) -> ( D - E ) = ( D - D ) ) |
| 28 | 15 20 27 | 3eqtr4d | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |
| 29 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 30 | 29 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 31 | 1 | eleq1d | |- ( k = j -> ( A e. CC <-> B e. CC ) ) |
| 32 | 9 | adantr | |- ( ( ph /\ j e. ( M ..^ N ) ) -> A. k e. ( M ... N ) A e. CC ) |
| 33 | elfzofz | |- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
|
| 34 | 33 | adantl | |- ( ( ph /\ j e. ( M ..^ N ) ) -> j e. ( M ... N ) ) |
| 35 | 31 32 34 | rspcdva | |- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
| 36 | 2 | eleq1d | |- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
| 37 | fzofzp1 | |- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
|
| 38 | 37 | adantl | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( j + 1 ) e. ( M ... N ) ) |
| 39 | 36 32 38 | rspcdva | |- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
| 40 | 30 35 39 | fsumsub | |- ( ph -> sum_ j e. ( M ..^ N ) ( B - C ) = ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) ) |
| 41 | 40 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) ) |
| 42 | 1 | cbvsumv | |- sum_ k e. ( M ..^ N ) A = sum_ j e. ( M ..^ N ) B |
| 43 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 44 | 5 43 | syl | |- ( ph -> M e. ZZ ) |
| 45 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 46 | 44 45 | sylan | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 47 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 48 | 5 47 | syl | |- ( ph -> N e. ZZ ) |
| 49 | 48 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ZZ ) |
| 50 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 51 | 49 50 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 52 | fzossfz | |- ( M ..^ N ) C_ ( M ... N ) |
|
| 53 | 51 52 | eqsstrrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ... ( N - 1 ) ) C_ ( M ... N ) ) |
| 54 | 53 | sselda | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ... N ) ) |
| 55 | 6 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... N ) ) -> A e. CC ) |
| 56 | 54 55 | syldan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 57 | 46 56 3 | fsum1p | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) A = ( D + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) ) |
| 58 | 51 | sumeq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) A = sum_ k e. ( M ... ( N - 1 ) ) A ) |
| 59 | fzoval | |- ( N e. ZZ -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
|
| 60 | 49 59 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 61 | 60 | sumeq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) A = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) |
| 62 | 61 | oveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) = ( D + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) ) |
| 63 | 57 58 62 | 3eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) A = ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 64 | 42 63 | eqtr3id | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) B = ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 65 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 66 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 67 | 44 66 | syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 68 | 67 | sselda | |- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 69 | 68 6 | syldan | |- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> A e. CC ) |
| 70 | 69 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> A e. CC ) |
| 71 | 65 70 4 | fsumm1 | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) A = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) ) |
| 72 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 73 | 44 | peano2zd | |- ( ph -> ( M + 1 ) e. ZZ ) |
| 74 | 72 73 48 69 2 | fsumshftm | |- ( ph -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) C ) |
| 75 | 44 | zcnd | |- ( ph -> M e. CC ) |
| 76 | ax-1cn | |- 1 e. CC |
|
| 77 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 78 | 75 76 77 | sylancl | |- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 79 | 78 | oveq1d | |- ( ph -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
| 80 | 48 50 | syl | |- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 81 | 79 80 | eqtr4d | |- ( ph -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ..^ N ) ) |
| 82 | 81 | sumeq1d | |- ( ph -> sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) C = sum_ j e. ( M ..^ N ) C ) |
| 83 | 74 82 | eqtrd | |- ( ph -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( M ..^ N ) C ) |
| 84 | 83 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) A = sum_ j e. ( M ..^ N ) C ) |
| 85 | 48 59 | syl | |- ( ph -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 86 | 85 | sumeq1d | |- ( ph -> sum_ k e. ( ( M + 1 ) ..^ N ) A = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A ) |
| 87 | 86 | oveq1d | |- ( ph -> ( sum_ k e. ( ( M + 1 ) ..^ N ) A + E ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) ) |
| 88 | fzofi | |- ( ( M + 1 ) ..^ N ) e. Fin |
|
| 89 | 88 | a1i | |- ( ph -> ( ( M + 1 ) ..^ N ) e. Fin ) |
| 90 | elfzofz | |- ( k e. ( ( M + 1 ) ..^ N ) -> k e. ( ( M + 1 ) ... N ) ) |
|
| 91 | 90 69 | sylan2 | |- ( ( ph /\ k e. ( ( M + 1 ) ..^ N ) ) -> A e. CC ) |
| 92 | 89 91 | fsumcl | |- ( ph -> sum_ k e. ( ( M + 1 ) ..^ N ) A e. CC ) |
| 93 | 4 | eleq1d | |- ( k = N -> ( A e. CC <-> E e. CC ) ) |
| 94 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 95 | 5 94 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 96 | 93 9 95 | rspcdva | |- ( ph -> E e. CC ) |
| 97 | 92 96 | addcomd | |- ( ph -> ( sum_ k e. ( ( M + 1 ) ..^ N ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 98 | 87 97 | eqtr3d | |- ( ph -> ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 99 | 98 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) A + E ) = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 100 | 71 84 99 | 3eqtr3d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) C = ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) |
| 101 | 64 100 | oveq12d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) B - sum_ j e. ( M ..^ N ) C ) = ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) ) |
| 102 | 12 96 92 | pnpcan2d | |- ( ph -> ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) = ( D - E ) ) |
| 103 | 102 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( D + sum_ k e. ( ( M + 1 ) ..^ N ) A ) - ( E + sum_ k e. ( ( M + 1 ) ..^ N ) A ) ) = ( D - E ) ) |
| 104 | 41 101 103 | 3eqtrd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |
| 105 | uzp1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 106 | 5 105 | syl | |- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 107 | 28 104 106 | mpjaodan | |- ( ph -> sum_ j e. ( M ..^ N ) ( B - C ) = ( D - E ) ) |