This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: B is decreasing and has a lower bound, then it converges. Since B is log A , in another theorem it is proven that A converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem13.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| stirlinglem13.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
| Assertion | stirlinglem13 | |- E. d e. RR B ~~> d |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem13.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | stirlinglem13.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 | elrnmpt | |- ( y e. _V -> ( y e. ran B <-> E. n e. NN y = ( log ` ( A ` n ) ) ) ) |
| 5 | 3 4 | ax-mp | |- ( y e. ran B <-> E. n e. NN y = ( log ` ( A ` n ) ) ) |
| 6 | simpr | |- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> y = ( log ` ( A ` n ) ) ) |
|
| 7 | 1 | stirlinglem2 | |- ( n e. NN -> ( A ` n ) e. RR+ ) |
| 8 | 7 | relogcld | |- ( n e. NN -> ( log ` ( A ` n ) ) e. RR ) |
| 9 | 8 | adantr | |- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> ( log ` ( A ` n ) ) e. RR ) |
| 10 | 6 9 | eqeltrd | |- ( ( n e. NN /\ y = ( log ` ( A ` n ) ) ) -> y e. RR ) |
| 11 | 10 | rexlimiva | |- ( E. n e. NN y = ( log ` ( A ` n ) ) -> y e. RR ) |
| 12 | 5 11 | sylbi | |- ( y e. ran B -> y e. RR ) |
| 13 | 12 | ssriv | |- ran B C_ RR |
| 14 | 1nn | |- 1 e. NN |
|
| 15 | 1 | stirlinglem2 | |- ( 1 e. NN -> ( A ` 1 ) e. RR+ ) |
| 16 | relogcl | |- ( ( A ` 1 ) e. RR+ -> ( log ` ( A ` 1 ) ) e. RR ) |
|
| 17 | 14 15 16 | mp2b | |- ( log ` ( A ` 1 ) ) e. RR |
| 18 | nfcv | |- F/_ n 1 |
|
| 19 | nfcv | |- F/_ n log |
|
| 20 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 21 | 1 20 | nfcxfr | |- F/_ n A |
| 22 | 21 18 | nffv | |- F/_ n ( A ` 1 ) |
| 23 | 19 22 | nffv | |- F/_ n ( log ` ( A ` 1 ) ) |
| 24 | 2fveq3 | |- ( n = 1 -> ( log ` ( A ` n ) ) = ( log ` ( A ` 1 ) ) ) |
|
| 25 | 18 23 24 2 | fvmptf | |- ( ( 1 e. NN /\ ( log ` ( A ` 1 ) ) e. RR ) -> ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) |
| 26 | 14 17 25 | mp2an | |- ( B ` 1 ) = ( log ` ( A ` 1 ) ) |
| 27 | 2fveq3 | |- ( j = 1 -> ( log ` ( A ` j ) ) = ( log ` ( A ` 1 ) ) ) |
|
| 28 | 27 | rspceeqv | |- ( ( 1 e. NN /\ ( B ` 1 ) = ( log ` ( A ` 1 ) ) ) -> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) |
| 29 | 14 26 28 | mp2an | |- E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) |
| 30 | 26 17 | eqeltri | |- ( B ` 1 ) e. RR |
| 31 | nfcv | |- F/_ j ( log ` ( A ` n ) ) |
|
| 32 | nfcv | |- F/_ n j |
|
| 33 | 21 32 | nffv | |- F/_ n ( A ` j ) |
| 34 | 19 33 | nffv | |- F/_ n ( log ` ( A ` j ) ) |
| 35 | 2fveq3 | |- ( n = j -> ( log ` ( A ` n ) ) = ( log ` ( A ` j ) ) ) |
|
| 36 | 31 34 35 | cbvmpt | |- ( n e. NN |-> ( log ` ( A ` n ) ) ) = ( j e. NN |-> ( log ` ( A ` j ) ) ) |
| 37 | 2 36 | eqtri | |- B = ( j e. NN |-> ( log ` ( A ` j ) ) ) |
| 38 | 37 | elrnmpt | |- ( ( B ` 1 ) e. RR -> ( ( B ` 1 ) e. ran B <-> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) ) |
| 39 | 30 38 | ax-mp | |- ( ( B ` 1 ) e. ran B <-> E. j e. NN ( B ` 1 ) = ( log ` ( A ` j ) ) ) |
| 40 | 29 39 | mpbir | |- ( B ` 1 ) e. ran B |
| 41 | 40 | ne0ii | |- ran B =/= (/) |
| 42 | 4re | |- 4 e. RR |
|
| 43 | 4ne0 | |- 4 =/= 0 |
|
| 44 | 42 43 | rereccli | |- ( 1 / 4 ) e. RR |
| 45 | 30 44 | resubcli | |- ( ( B ` 1 ) - ( 1 / 4 ) ) e. RR |
| 46 | eqid | |- ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
|
| 47 | 1 2 46 | stirlinglem12 | |- ( j e. NN -> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) |
| 48 | 47 | rgen | |- A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) |
| 49 | breq1 | |- ( x = ( ( B ` 1 ) - ( 1 / 4 ) ) -> ( x <_ ( B ` j ) <-> ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) ) |
|
| 50 | 49 | ralbidv | |- ( x = ( ( B ` 1 ) - ( 1 / 4 ) ) -> ( A. j e. NN x <_ ( B ` j ) <-> A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) ) |
| 51 | 50 | rspcev | |- ( ( ( ( B ` 1 ) - ( 1 / 4 ) ) e. RR /\ A. j e. NN ( ( B ` 1 ) - ( 1 / 4 ) ) <_ ( B ` j ) ) -> E. x e. RR A. j e. NN x <_ ( B ` j ) ) |
| 52 | 45 48 51 | mp2an | |- E. x e. RR A. j e. NN x <_ ( B ` j ) |
| 53 | simpr | |- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> y e. ran B ) |
|
| 54 | 8 | rgen | |- A. n e. NN ( log ` ( A ` n ) ) e. RR |
| 55 | 2 | fnmpt | |- ( A. n e. NN ( log ` ( A ` n ) ) e. RR -> B Fn NN ) |
| 56 | fvelrnb | |- ( B Fn NN -> ( y e. ran B <-> E. j e. NN ( B ` j ) = y ) ) |
|
| 57 | 54 55 56 | mp2b | |- ( y e. ran B <-> E. j e. NN ( B ` j ) = y ) |
| 58 | 53 57 | sylib | |- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> E. j e. NN ( B ` j ) = y ) |
| 59 | nfra1 | |- F/ j A. j e. NN x <_ ( B ` j ) |
|
| 60 | nfv | |- F/ j y e. ran B |
|
| 61 | 59 60 | nfan | |- F/ j ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) |
| 62 | nfv | |- F/ j x <_ y |
|
| 63 | simp1l | |- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> A. j e. NN x <_ ( B ` j ) ) |
|
| 64 | simp2 | |- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> j e. NN ) |
|
| 65 | rsp | |- ( A. j e. NN x <_ ( B ` j ) -> ( j e. NN -> x <_ ( B ` j ) ) ) |
|
| 66 | 63 64 65 | sylc | |- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> x <_ ( B ` j ) ) |
| 67 | simp3 | |- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> ( B ` j ) = y ) |
|
| 68 | 66 67 | breqtrd | |- ( ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) /\ j e. NN /\ ( B ` j ) = y ) -> x <_ y ) |
| 69 | 68 | 3exp | |- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> ( j e. NN -> ( ( B ` j ) = y -> x <_ y ) ) ) |
| 70 | 61 62 69 | rexlimd | |- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> ( E. j e. NN ( B ` j ) = y -> x <_ y ) ) |
| 71 | 58 70 | mpd | |- ( ( A. j e. NN x <_ ( B ` j ) /\ y e. ran B ) -> x <_ y ) |
| 72 | 71 | ralrimiva | |- ( A. j e. NN x <_ ( B ` j ) -> A. y e. ran B x <_ y ) |
| 73 | 72 | reximi | |- ( E. x e. RR A. j e. NN x <_ ( B ` j ) -> E. x e. RR A. y e. ran B x <_ y ) |
| 74 | 52 73 | ax-mp | |- E. x e. RR A. y e. ran B x <_ y |
| 75 | infrecl | |- ( ( ran B C_ RR /\ ran B =/= (/) /\ E. x e. RR A. y e. ran B x <_ y ) -> inf ( ran B , RR , < ) e. RR ) |
|
| 76 | 13 41 74 75 | mp3an | |- inf ( ran B , RR , < ) e. RR |
| 77 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 78 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 79 | 2 8 | fmpti | |- B : NN --> RR |
| 80 | 79 | a1i | |- ( T. -> B : NN --> RR ) |
| 81 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 82 | 1 | a1i | |- ( j e. NN -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
| 83 | simpr | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> n = ( j + 1 ) ) |
|
| 84 | 83 | fveq2d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ! ` n ) = ( ! ` ( j + 1 ) ) ) |
| 85 | 83 | oveq2d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( 2 x. n ) = ( 2 x. ( j + 1 ) ) ) |
| 86 | 85 | fveq2d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. ( j + 1 ) ) ) ) |
| 87 | 83 | oveq1d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( n / _e ) = ( ( j + 1 ) / _e ) ) |
| 88 | 87 83 | oveq12d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( n / _e ) ^ n ) = ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) |
| 89 | 86 88 | oveq12d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) |
| 90 | 84 89 | oveq12d | |- ( ( j e. NN /\ n = ( j + 1 ) ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) ) |
| 91 | 81 | nnnn0d | |- ( j e. NN -> ( j + 1 ) e. NN0 ) |
| 92 | faccl | |- ( ( j + 1 ) e. NN0 -> ( ! ` ( j + 1 ) ) e. NN ) |
|
| 93 | nncn | |- ( ( ! ` ( j + 1 ) ) e. NN -> ( ! ` ( j + 1 ) ) e. CC ) |
|
| 94 | 91 92 93 | 3syl | |- ( j e. NN -> ( ! ` ( j + 1 ) ) e. CC ) |
| 95 | 2cnd | |- ( j e. NN -> 2 e. CC ) |
|
| 96 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 97 | 1cnd | |- ( j e. NN -> 1 e. CC ) |
|
| 98 | 96 97 | addcld | |- ( j e. NN -> ( j + 1 ) e. CC ) |
| 99 | 95 98 | mulcld | |- ( j e. NN -> ( 2 x. ( j + 1 ) ) e. CC ) |
| 100 | 99 | sqrtcld | |- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) e. CC ) |
| 101 | ere | |- _e e. RR |
|
| 102 | 101 | recni | |- _e e. CC |
| 103 | 102 | a1i | |- ( j e. NN -> _e e. CC ) |
| 104 | 0re | |- 0 e. RR |
|
| 105 | epos | |- 0 < _e |
|
| 106 | 104 105 | gtneii | |- _e =/= 0 |
| 107 | 106 | a1i | |- ( j e. NN -> _e =/= 0 ) |
| 108 | 98 103 107 | divcld | |- ( j e. NN -> ( ( j + 1 ) / _e ) e. CC ) |
| 109 | 108 91 | expcld | |- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) e. CC ) |
| 110 | 100 109 | mulcld | |- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) e. CC ) |
| 111 | 2rp | |- 2 e. RR+ |
|
| 112 | 111 | a1i | |- ( j e. NN -> 2 e. RR+ ) |
| 113 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 114 | 104 | a1i | |- ( j e. NN -> 0 e. RR ) |
| 115 | 1red | |- ( j e. NN -> 1 e. RR ) |
|
| 116 | 0le1 | |- 0 <_ 1 |
|
| 117 | 116 | a1i | |- ( j e. NN -> 0 <_ 1 ) |
| 118 | nnge1 | |- ( j e. NN -> 1 <_ j ) |
|
| 119 | 114 115 113 117 118 | letrd | |- ( j e. NN -> 0 <_ j ) |
| 120 | 113 119 | ge0p1rpd | |- ( j e. NN -> ( j + 1 ) e. RR+ ) |
| 121 | 112 120 | rpmulcld | |- ( j e. NN -> ( 2 x. ( j + 1 ) ) e. RR+ ) |
| 122 | 121 | sqrtgt0d | |- ( j e. NN -> 0 < ( sqrt ` ( 2 x. ( j + 1 ) ) ) ) |
| 123 | 122 | gt0ne0d | |- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) =/= 0 ) |
| 124 | 81 | nnne0d | |- ( j e. NN -> ( j + 1 ) =/= 0 ) |
| 125 | 98 103 124 107 | divne0d | |- ( j e. NN -> ( ( j + 1 ) / _e ) =/= 0 ) |
| 126 | nnz | |- ( j e. NN -> j e. ZZ ) |
|
| 127 | 126 | peano2zd | |- ( j e. NN -> ( j + 1 ) e. ZZ ) |
| 128 | 108 125 127 | expne0d | |- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) =/= 0 ) |
| 129 | 100 109 123 128 | mulne0d | |- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) =/= 0 ) |
| 130 | 94 110 129 | divcld | |- ( j e. NN -> ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) e. CC ) |
| 131 | 82 90 81 130 | fvmptd | |- ( j e. NN -> ( A ` ( j + 1 ) ) = ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) ) |
| 132 | nnrp | |- ( ( ! ` ( j + 1 ) ) e. NN -> ( ! ` ( j + 1 ) ) e. RR+ ) |
|
| 133 | 91 92 132 | 3syl | |- ( j e. NN -> ( ! ` ( j + 1 ) ) e. RR+ ) |
| 134 | 121 | rpsqrtcld | |- ( j e. NN -> ( sqrt ` ( 2 x. ( j + 1 ) ) ) e. RR+ ) |
| 135 | epr | |- _e e. RR+ |
|
| 136 | 135 | a1i | |- ( j e. NN -> _e e. RR+ ) |
| 137 | 120 136 | rpdivcld | |- ( j e. NN -> ( ( j + 1 ) / _e ) e. RR+ ) |
| 138 | 137 127 | rpexpcld | |- ( j e. NN -> ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) e. RR+ ) |
| 139 | 134 138 | rpmulcld | |- ( j e. NN -> ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) e. RR+ ) |
| 140 | 133 139 | rpdivcld | |- ( j e. NN -> ( ( ! ` ( j + 1 ) ) / ( ( sqrt ` ( 2 x. ( j + 1 ) ) ) x. ( ( ( j + 1 ) / _e ) ^ ( j + 1 ) ) ) ) e. RR+ ) |
| 141 | 131 140 | eqeltrd | |- ( j e. NN -> ( A ` ( j + 1 ) ) e. RR+ ) |
| 142 | 141 | relogcld | |- ( j e. NN -> ( log ` ( A ` ( j + 1 ) ) ) e. RR ) |
| 143 | nfcv | |- F/_ n ( j + 1 ) |
|
| 144 | 21 143 | nffv | |- F/_ n ( A ` ( j + 1 ) ) |
| 145 | 19 144 | nffv | |- F/_ n ( log ` ( A ` ( j + 1 ) ) ) |
| 146 | 2fveq3 | |- ( n = ( j + 1 ) -> ( log ` ( A ` n ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
|
| 147 | 143 145 146 2 | fvmptf | |- ( ( ( j + 1 ) e. NN /\ ( log ` ( A ` ( j + 1 ) ) ) e. RR ) -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 148 | 81 142 147 | syl2anc | |- ( j e. NN -> ( B ` ( j + 1 ) ) = ( log ` ( A ` ( j + 1 ) ) ) ) |
| 149 | 148 142 | eqeltrd | |- ( j e. NN -> ( B ` ( j + 1 ) ) e. RR ) |
| 150 | 79 | ffvelcdmi | |- ( j e. NN -> ( B ` j ) e. RR ) |
| 151 | eqid | |- ( z e. NN |-> ( ( 1 / ( ( 2 x. z ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. z ) ) ) ) = ( z e. NN |-> ( ( 1 / ( ( 2 x. z ) + 1 ) ) x. ( ( 1 / ( ( 2 x. j ) + 1 ) ) ^ ( 2 x. z ) ) ) ) |
|
| 152 | 1 2 151 | stirlinglem11 | |- ( j e. NN -> ( B ` ( j + 1 ) ) < ( B ` j ) ) |
| 153 | 149 150 152 | ltled | |- ( j e. NN -> ( B ` ( j + 1 ) ) <_ ( B ` j ) ) |
| 154 | 153 | adantl | |- ( ( T. /\ j e. NN ) -> ( B ` ( j + 1 ) ) <_ ( B ` j ) ) |
| 155 | 52 | a1i | |- ( T. -> E. x e. RR A. j e. NN x <_ ( B ` j ) ) |
| 156 | 77 78 80 154 155 | climinf | |- ( T. -> B ~~> inf ( ran B , RR , < ) ) |
| 157 | 156 | mptru | |- B ~~> inf ( ran B , RR , < ) |
| 158 | breq2 | |- ( d = inf ( ran B , RR , < ) -> ( B ~~> d <-> B ~~> inf ( ran B , RR , < ) ) ) |
|
| 159 | 158 | rspcev | |- ( ( inf ( ran B , RR , < ) e. RR /\ B ~~> inf ( ran B , RR , < ) ) -> E. d e. RR B ~~> d ) |
| 160 | 76 157 159 | mp2an | |- E. d e. RR B ~~> d |