This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| clim2ser.2 | |- ( ph -> N e. Z ) |
||
| clim2ser.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| clim2ser.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| Assertion | clim2ser | |- ( ph -> seq ( N + 1 ) ( + , F ) ~~> ( A - ( seq M ( + , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | clim2ser.2 | |- ( ph -> N e. Z ) |
|
| 3 | clim2ser.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | clim2ser.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 5 | eqid | |- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
|
| 6 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 7 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 9 | eluzelz | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 6 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | 1 12 3 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 14 | 13 2 | ffvelcdmd | |- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
| 15 | seqex | |- seq ( N + 1 ) ( + , F ) e. _V |
|
| 16 | 15 | a1i | |- ( ph -> seq ( N + 1 ) ( + , F ) e. _V ) |
| 17 | 13 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> seq M ( + , F ) : Z --> CC ) |
| 18 | 8 1 | eleqtrrdi | |- ( ph -> ( N + 1 ) e. Z ) |
| 19 | 1 | uztrn2 | |- ( ( ( N + 1 ) e. Z /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 20 | 18 19 | sylan | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 21 | 17 20 | ffvelcdmd | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 22 | addcl | |- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
|
| 23 | 22 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
| 24 | addass | |- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
|
| 25 | 24 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
| 26 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 27 | 6 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| 28 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 29 | 28 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 30 | 29 3 | sylan2 | |- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 31 | 30 | adantlr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 32 | 23 25 26 27 31 | seqsplit | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) ) |
| 33 | 32 | oveq1d | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( + , F ) ` j ) - ( seq M ( + , F ) ` N ) ) = ( ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) - ( seq M ( + , F ) ` N ) ) ) |
| 34 | 14 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
| 35 | 1 | uztrn2 | |- ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 36 | 18 35 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 37 | 36 3 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 38 | 5 10 37 | serf | |- ( ph -> seq ( N + 1 ) ( + , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 39 | 38 | ffvelcdmda | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) e. CC ) |
| 40 | 34 39 | pncan2d | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) - ( seq M ( + , F ) ` N ) ) = ( seq ( N + 1 ) ( + , F ) ` j ) ) |
| 41 | 33 40 | eqtr2d | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) = ( ( seq M ( + , F ) ` j ) - ( seq M ( + , F ) ` N ) ) ) |
| 42 | 5 10 4 14 16 21 41 | climsubc1 | |- ( ph -> seq ( N + 1 ) ( + , F ) ~~> ( A - ( seq M ( + , F ) ` N ) ) ) |