This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose sine is zero is an integer multiple of _pi . (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sineq0 | |- ( A e. CC -> ( ( sin ` A ) = 0 <-> ( A / _pi ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinval | |- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 2 | 1 | eqeq1d | |- ( A e. CC -> ( ( sin ` A ) = 0 <-> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 ) ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 5 | 3 4 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 6 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 7 | 5 6 | syl | |- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 8 | negicn | |- -u _i e. CC |
|
| 9 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 10 | 8 9 | mpan | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 11 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 12 | 10 11 | syl | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 13 | 7 12 | subcld | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 14 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 15 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 16 | diveq0 | |- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
|
| 17 | 14 15 16 | mp3an23 | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
| 18 | 13 17 | syl | |- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
| 19 | 7 12 | subeq0ad | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) |
| 20 | 2 18 19 | 3bitrd | |- ( A e. CC -> ( ( sin ` A ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) |
| 21 | oveq2 | |- ( ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
|
| 22 | 2cn | |- 2 e. CC |
|
| 23 | mul12 | |- ( ( _i e. CC /\ 2 e. CC /\ A e. CC ) -> ( _i x. ( 2 x. A ) ) = ( 2 x. ( _i x. A ) ) ) |
|
| 24 | 3 22 23 | mp3an12 | |- ( A e. CC -> ( _i x. ( 2 x. A ) ) = ( 2 x. ( _i x. A ) ) ) |
| 25 | 5 | 2timesd | |- ( A e. CC -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 26 | 24 25 | eqtrd | |- ( A e. CC -> ( _i x. ( 2 x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 27 | 26 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. ( 2 x. A ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) ) |
| 28 | efadd | |- ( ( ( _i x. A ) e. CC /\ ( _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
|
| 29 | 5 5 28 | syl2anc | |- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
| 30 | 27 29 | eqtr2d | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( exp ` ( _i x. ( 2 x. A ) ) ) ) |
| 31 | efadd | |- ( ( ( _i x. A ) e. CC /\ ( -u _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
|
| 32 | 5 10 31 | syl2anc | |- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
| 33 | 3 | negidi | |- ( _i + -u _i ) = 0 |
| 34 | 33 | oveq1i | |- ( ( _i + -u _i ) x. A ) = ( 0 x. A ) |
| 35 | adddir | |- ( ( _i e. CC /\ -u _i e. CC /\ A e. CC ) -> ( ( _i + -u _i ) x. A ) = ( ( _i x. A ) + ( -u _i x. A ) ) ) |
|
| 36 | 3 8 35 | mp3an12 | |- ( A e. CC -> ( ( _i + -u _i ) x. A ) = ( ( _i x. A ) + ( -u _i x. A ) ) ) |
| 37 | mul02 | |- ( A e. CC -> ( 0 x. A ) = 0 ) |
|
| 38 | 34 36 37 | 3eqtr3a | |- ( A e. CC -> ( ( _i x. A ) + ( -u _i x. A ) ) = 0 ) |
| 39 | 38 | fveq2d | |- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( exp ` 0 ) ) |
| 40 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 41 | 39 40 | eqtrdi | |- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = 1 ) |
| 42 | 32 41 | eqtr3d | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) = 1 ) |
| 43 | 30 42 | eqeq12d | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) <-> ( exp ` ( _i x. ( 2 x. A ) ) ) = 1 ) ) |
| 44 | fveq2 | |- ( ( exp ` ( _i x. ( 2 x. A ) ) ) = 1 -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) |
|
| 45 | 43 44 | biimtrdi | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) |
| 46 | 21 45 | syl5 | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) |
| 47 | 20 46 | sylbid | |- ( A e. CC -> ( ( sin ` A ) = 0 -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) ) |
| 48 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 49 | 48 | eqeq2i | |- ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) |
| 50 | 2re | |- 2 e. RR |
|
| 51 | 2ne0 | |- 2 =/= 0 |
|
| 52 | mulre | |- ( ( A e. CC /\ 2 e. RR /\ 2 =/= 0 ) -> ( A e. RR <-> ( 2 x. A ) e. RR ) ) |
|
| 53 | 50 51 52 | mp3an23 | |- ( A e. CC -> ( A e. RR <-> ( 2 x. A ) e. RR ) ) |
| 54 | mulcl | |- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
|
| 55 | 22 54 | mpan | |- ( A e. CC -> ( 2 x. A ) e. CC ) |
| 56 | absefib | |- ( ( 2 x. A ) e. CC -> ( ( 2 x. A ) e. RR <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) ) |
|
| 57 | 55 56 | syl | |- ( A e. CC -> ( ( 2 x. A ) e. RR <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) ) |
| 58 | 53 57 | bitr2d | |- ( A e. CC -> ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 <-> A e. RR ) ) |
| 59 | 49 58 | bitrid | |- ( A e. CC -> ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) <-> A e. RR ) ) |
| 60 | 47 59 | sylibd | |- ( A e. CC -> ( ( sin ` A ) = 0 -> A e. RR ) ) |
| 61 | 60 | imp | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> A e. RR ) |
| 62 | pirp | |- _pi e. RR+ |
|
| 63 | modval | |- ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
|
| 64 | 61 62 63 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
| 65 | picn | |- _pi e. CC |
|
| 66 | pire | |- _pi e. RR |
|
| 67 | pipos | |- 0 < _pi |
|
| 68 | 66 67 | gt0ne0ii | |- _pi =/= 0 |
| 69 | redivcl | |- ( ( A e. RR /\ _pi e. RR /\ _pi =/= 0 ) -> ( A / _pi ) e. RR ) |
|
| 70 | 66 68 69 | mp3an23 | |- ( A e. RR -> ( A / _pi ) e. RR ) |
| 71 | 61 70 | syl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. RR ) |
| 72 | 71 | flcld | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. ZZ ) |
| 73 | 72 | zcnd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. CC ) |
| 74 | mulcl | |- ( ( _pi e. CC /\ ( |_ ` ( A / _pi ) ) e. CC ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) |
|
| 75 | 65 73 74 | sylancr | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) |
| 76 | negsub | |- ( ( A e. CC /\ ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
|
| 77 | 75 76 | syldan | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
| 78 | mulcom | |- ( ( _pi e. CC /\ ( |_ ` ( A / _pi ) ) e. CC ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
|
| 79 | 65 73 78 | sylancr | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
| 80 | 79 | negeqd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( _pi x. ( |_ ` ( A / _pi ) ) ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
| 81 | mulneg1 | |- ( ( ( |_ ` ( A / _pi ) ) e. CC /\ _pi e. CC ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
|
| 82 | 73 65 81 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
| 83 | 80 82 | eqtr4d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( _pi x. ( |_ ` ( A / _pi ) ) ) = ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) |
| 84 | 83 | oveq2d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) |
| 85 | 64 77 84 | 3eqtr2d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) |
| 86 | 85 | fveq2d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` ( A mod _pi ) ) = ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) |
| 87 | 86 | fveq2d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) |
| 88 | 72 | znegcld | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( |_ ` ( A / _pi ) ) e. ZZ ) |
| 89 | abssinper | |- ( ( A e. CC /\ -u ( |_ ` ( A / _pi ) ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
|
| 90 | 88 89 | syldan | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| 91 | simpr | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` A ) = 0 ) |
|
| 92 | 91 | fveq2d | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = ( abs ` 0 ) ) |
| 93 | 87 90 92 | 3eqtrd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` 0 ) ) |
| 94 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 95 | 93 94 | eqtrdi | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = 0 ) |
| 96 | modcl | |- ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) e. RR ) |
|
| 97 | 61 62 96 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) e. RR ) |
| 98 | modlt | |- ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) < _pi ) |
|
| 99 | 61 62 98 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) < _pi ) |
| 100 | 97 99 | jca | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) |
| 101 | 100 | biantrurd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) ) |
| 102 | 0re | |- 0 e. RR |
|
| 103 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 104 | rexr | |- ( _pi e. RR -> _pi e. RR* ) |
|
| 105 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) ) |
|
| 106 | 103 104 105 | syl2an | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) ) |
| 107 | 102 66 106 | mp2an | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) |
| 108 | 3anan32 | |- ( ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) |
|
| 109 | 107 108 | bitri | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) /\ 0 < ( A mod _pi ) ) ) |
| 110 | 101 109 | bitr4di | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) <-> ( A mod _pi ) e. ( 0 (,) _pi ) ) ) |
| 111 | sinq12gt0 | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A mod _pi ) ) ) |
|
| 112 | elioore | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( A mod _pi ) e. RR ) |
|
| 113 | 112 | resincld | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( sin ` ( A mod _pi ) ) e. RR ) |
| 114 | ltle | |- ( ( 0 e. RR /\ ( sin ` ( A mod _pi ) ) e. RR ) -> ( 0 < ( sin ` ( A mod _pi ) ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) ) |
|
| 115 | 102 113 114 | sylancr | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( 0 < ( sin ` ( A mod _pi ) ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) ) |
| 116 | 111 115 | mpd | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 <_ ( sin ` ( A mod _pi ) ) ) |
| 117 | 113 116 | absidd | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( sin ` ( A mod _pi ) ) ) |
| 118 | 111 117 | breqtrrd | |- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) |
| 119 | 110 118 | biimtrdi | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) -> 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) ) |
| 120 | ltne | |- ( ( 0 e. RR /\ 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) |
|
| 121 | 102 120 | mpan | |- ( 0 < ( abs ` ( sin ` ( A mod _pi ) ) ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) |
| 122 | 119 121 | syl6 | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) =/= 0 ) ) |
| 123 | 122 | necon2bd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( abs ` ( sin ` ( A mod _pi ) ) ) = 0 -> -. 0 < ( A mod _pi ) ) ) |
| 124 | 95 123 | mpd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. 0 < ( A mod _pi ) ) |
| 125 | modge0 | |- ( ( A e. RR /\ _pi e. RR+ ) -> 0 <_ ( A mod _pi ) ) |
|
| 126 | 61 62 125 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 <_ ( A mod _pi ) ) |
| 127 | leloe | |- ( ( 0 e. RR /\ ( A mod _pi ) e. RR ) -> ( 0 <_ ( A mod _pi ) <-> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) ) |
|
| 128 | 102 97 127 | sylancr | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 <_ ( A mod _pi ) <-> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) ) |
| 129 | 126 128 | mpbid | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) |
| 130 | 129 | ord | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -. 0 < ( A mod _pi ) -> 0 = ( A mod _pi ) ) ) |
| 131 | 124 130 | mpd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 = ( A mod _pi ) ) |
| 132 | 131 | eqcomd | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = 0 ) |
| 133 | mod0 | |- ( ( A e. RR /\ _pi e. RR+ ) -> ( ( A mod _pi ) = 0 <-> ( A / _pi ) e. ZZ ) ) |
|
| 134 | 61 62 133 | sylancl | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( A mod _pi ) = 0 <-> ( A / _pi ) e. ZZ ) ) |
| 135 | 132 134 | mpbid | |- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. ZZ ) |
| 136 | divcan1 | |- ( ( A e. CC /\ _pi e. CC /\ _pi =/= 0 ) -> ( ( A / _pi ) x. _pi ) = A ) |
|
| 137 | 65 68 136 | mp3an23 | |- ( A e. CC -> ( ( A / _pi ) x. _pi ) = A ) |
| 138 | 137 | fveq2d | |- ( A e. CC -> ( sin ` ( ( A / _pi ) x. _pi ) ) = ( sin ` A ) ) |
| 139 | sinkpi | |- ( ( A / _pi ) e. ZZ -> ( sin ` ( ( A / _pi ) x. _pi ) ) = 0 ) |
|
| 140 | 138 139 | sylan9req | |- ( ( A e. CC /\ ( A / _pi ) e. ZZ ) -> ( sin ` A ) = 0 ) |
| 141 | 135 140 | impbida | |- ( A e. CC -> ( ( sin ` A ) = 0 <-> ( A / _pi ) e. ZZ ) ) |