This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a number strictly between 0 and _pi is positive. (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinq12gt0 | |- ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | 2 | rexri | |- _pi e. RR* |
| 4 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) |
|
| 5 | 1 3 4 | mp2an | |- ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) |
| 6 | rehalfcl | |- ( A e. RR -> ( A / 2 ) e. RR ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) e. RR ) |
| 8 | halfpos2 | |- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) |
|
| 9 | 8 | biimpa | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( A / 2 ) ) |
| 10 | 9 | 3adant3 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( A / 2 ) ) |
| 11 | 2re | |- 2 e. RR |
|
| 12 | 2pos | |- 0 < 2 |
|
| 13 | 11 12 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 14 | ltdiv1 | |- ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
|
| 15 | 2 13 14 | mp3an23 | |- ( A e. RR -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
| 16 | 15 | adantr | |- ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
| 17 | 16 | biimp3a | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) < ( _pi / 2 ) ) |
| 18 | sincosq1lem | |- ( ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( A / 2 ) ) ) |
|
| 19 | 7 10 17 18 | syl3anc | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( A / 2 ) ) ) |
| 20 | resubcl | |- ( ( _pi e. RR /\ A e. RR ) -> ( _pi - A ) e. RR ) |
|
| 21 | 2 20 | mpan | |- ( A e. RR -> ( _pi - A ) e. RR ) |
| 22 | rehalfcl | |- ( ( _pi - A ) e. RR -> ( ( _pi - A ) / 2 ) e. RR ) |
|
| 23 | 21 22 | syl | |- ( A e. RR -> ( ( _pi - A ) / 2 ) e. RR ) |
| 24 | 23 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) e. RR ) |
| 25 | posdif | |- ( ( A e. RR /\ _pi e. RR ) -> ( A < _pi <-> 0 < ( _pi - A ) ) ) |
|
| 26 | 2 25 | mpan2 | |- ( A e. RR -> ( A < _pi <-> 0 < ( _pi - A ) ) ) |
| 27 | halfpos2 | |- ( ( _pi - A ) e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
|
| 28 | 21 27 | syl | |- ( A e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 29 | 26 28 | bitrd | |- ( A e. RR -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 30 | 29 | adantr | |- ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 31 | 30 | biimp3a | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( ( _pi - A ) / 2 ) ) |
| 32 | ltsubpos | |- ( ( A e. RR /\ _pi e. RR ) -> ( 0 < A <-> ( _pi - A ) < _pi ) ) |
|
| 33 | 2 32 | mpan2 | |- ( A e. RR -> ( 0 < A <-> ( _pi - A ) < _pi ) ) |
| 34 | ltdiv1 | |- ( ( ( _pi - A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
|
| 35 | 2 13 34 | mp3an23 | |- ( ( _pi - A ) e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 36 | 21 35 | syl | |- ( A e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 37 | 33 36 | bitrd | |- ( A e. RR -> ( 0 < A <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 38 | 37 | biimpa | |- ( ( A e. RR /\ 0 < A ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) |
| 39 | 38 | 3adant3 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) |
| 40 | sincosq1lem | |- ( ( ( ( _pi - A ) / 2 ) e. RR /\ 0 < ( ( _pi - A ) / 2 ) /\ ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) |
|
| 41 | 24 31 39 40 | syl3anc | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) |
| 42 | recn | |- ( A e. RR -> A e. CC ) |
|
| 43 | picn | |- _pi e. CC |
|
| 44 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 45 | divsubdir | |- ( ( _pi e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
|
| 46 | 43 44 45 | mp3an13 | |- ( A e. CC -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
| 47 | 42 46 | syl | |- ( A e. RR -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
| 48 | 47 | fveq2d | |- ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) ) |
| 49 | 6 | recnd | |- ( A e. RR -> ( A / 2 ) e. CC ) |
| 50 | sinhalfpim | |- ( ( A / 2 ) e. CC -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) |
|
| 51 | 49 50 | syl | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) |
| 52 | 48 51 | eqtrd | |- ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) |
| 53 | 52 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) |
| 54 | 41 53 | breqtrd | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( cos ` ( A / 2 ) ) ) |
| 55 | resincl | |- ( ( A / 2 ) e. RR -> ( sin ` ( A / 2 ) ) e. RR ) |
|
| 56 | recoscl | |- ( ( A / 2 ) e. RR -> ( cos ` ( A / 2 ) ) e. RR ) |
|
| 57 | 55 56 | jca | |- ( ( A / 2 ) e. RR -> ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) ) |
| 58 | axmulgt0 | |- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
|
| 59 | 6 57 58 | 3syl | |- ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 60 | remulcl | |- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
|
| 61 | 6 57 60 | 3syl | |- ( A e. RR -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
| 62 | axmulgt0 | |- ( ( 2 e. RR /\ ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
|
| 63 | 11 61 62 | sylancr | |- ( A e. RR -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 64 | 12 63 | mpani | |- ( A e. RR -> ( 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 65 | 59 64 | syld | |- ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 66 | 65 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 67 | 19 54 66 | mp2and | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 68 | 2cn | |- 2 e. CC |
|
| 69 | 2ne0 | |- 2 =/= 0 |
|
| 70 | divcan2 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
|
| 71 | 68 69 70 | mp3an23 | |- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 72 | 42 71 | syl | |- ( A e. RR -> ( 2 x. ( A / 2 ) ) = A ) |
| 73 | 72 | fveq2d | |- ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( sin ` A ) ) |
| 74 | sin2t | |- ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
|
| 75 | 49 74 | syl | |- ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 76 | 73 75 | eqtr3d | |- ( A e. RR -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 77 | 76 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 78 | 67 77 | breqtrrd | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) |
| 79 | 5 78 | sylbi | |- ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) |